学年

教科

質問の種類

数学 大学生・専門学校生・社会人

黄色い蛍光色の部分に関して 1.なぜこのように言い換えができるのか 2.なぜこの確率が1/kなのか 以上のことがよくわかっていません。 わかる方お願いします🤲

る. 【基礎0.10.6】 (1993AIME 問8 ) Sは6個の元からなる集合とする. Sのふたつの部 分集合 A, B を選びS = AUB とする方法は何通り あるか ただし AnB≠中でもよく、 またAとB を交換しただけのものは同一の方法とみなす.例え ば A={a,c},B={b,c,d,e,f} と A = {b,c,d,e, f}, B = {a, c} は同じとみなす. 解答n=#S=6とする. S=AUB のとき、各 s∈Sは, s∈A-B,s∈B-A, a∈ANB の3通 りの可能性がある. だから (A,B) と (B, A) を区別 して数えるとき, A, B の選び方は3通りある. ま たA=BとなるのはA=B=Sの場合に限る. し たがって (A,B) = (B, A) とみなす場合, その場合 3-1 の数は, +1=365 通りとなり、これが求め 2 る答である. 第 0.10.2 項 確率と期待値 起り得るすべての場合を分母として,問題になっ ている事柄が起きる場合の比をその確率という. 例えば、ある事柄が起こった場合賞金 a(z) 円 がもらえる場合が起きる確率をP(x) として, す 48 の必要十分条件は、 1回目のくじで (k-1) 位以上 だった (k-1) 人のいずれよりも2回目のくじで上 位になること, いいかえると, 1回目のくじで位 以内のk人の中で2回目のくじが1位であることで であるので 求める期待値は ある。 この確率は N k=1 である. 有限集合 【基礎0.10.8】 (1994JMO 本選問5) Nを正の整数とする. 1 から Nまでの数字を一つず つ書いたくじがあり, N人でこのくじを引けば1位 からN位までの順位をつけることができる. N人 でこのくじ引きを2回行い、 次のようにして景品を 与える人を決めることにする. 「ある人Aに対して、 1回目と2回目の順位の双 方がともにAより上位である人Bがいる場合には Aには景品を与えない. そのようなBがいない場 合に限りAに景品を与える. 例えば、 1回目で1位 を引いた人は2回目が何位であっても景品をもら える」 このとき、景品をもらえる人数の期待値を求めよ. ただしくじはあらかじめよくかきまぜてあり、2回 目のくじ引きの前にもう一度よくかきまぜるものと する. また「景品をもらえる人数の期待値」とは, そ れぞれの場合が起こる確率とその場合に景品をもら える人数を掛けた値を、全部の場合について足し合 わせたものである. 解答 1回目のくじでk位の人が景品をもらうため とする. もしbi がnで割り切れるなら, { (1,02.... } が求める部分集合である. そこで、どのbiもn で割り切れないとする。これらをnで割ったときの 余りは 1,2,... n-1 のどれかであるから、 鳩の巣原 理によりnで割ったあまりが等しい2数が存在す る. それらをbi, bj (i < j) とする. すると It n bj-bi = Qi+1 + ai+2 + ... + aj で割り切れるから, {ai+1, Oi+2..... aj} が求め

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学のチャート式の問題です! 自分はこの2つの方程式がどっちも=0だったので2つの式の左辺同士をイコールで結び、共通解をαと置いて計算しました。それが、2枚目の写真のものです。ですが、それだと解答が間違っているようです。 なぜ自分の解答ではダメなのか、なぜチャート式の解... 続きを読む

重要 例題 方程式の共通解 2つの2次方程式 2x2+kx+4=0, x2+x+k = 0 がただ1つの共通の実数 解をもつように, 定数kの値を定め、その共通解を求めよ。 CHART S OLUTION 方程式の解 共通解をメとおくる x=α が解⇔ x=α を代入して方程式が成り立つ もんだいは 2つの方程式の共通解を x=α とすると,それぞれの式にx=α を代入した 2a²+ka+4=0,a2+α+k=0 が成り立つ。これをα, kについての連立方程式 とみて解く。実数解という条件に注意。 解答 共通解を x =α とすると 2a²+ka+4=0 •••••• ・①, a²+a+k=0 ①②×2 から (k-2)α+4-2k=0 すなわち (k-2)a-2(k-2)=0 よって ゆえに [1] k=2 のとき 2つの方程式は, ともに x2+x+2=0 となる。 その判別式をDとすると (k-2)(a-2)=0 k=2 または α=2 D=12-4・1・2=-7 D<0であり,実数解をもたないから, k = 2 は適さない。 [2] α=2 のとき ②から 22+2+k=0 このとき2つの方程式は 2x2-6x+4=0 ゆえに k=-6 ...... (2) 基本 75 ...... ・①', x2+x-6=0 となり,①'の解はx=1, 2 ②' の解はx=2, -3 よって,確かにただ1つの共通解 x=2をもつ。 [1],[2] から k=-6, 共通解はx=2 x=α を代入した ① と ②の連立方程式を解く。 α² の項を消す。 共通の実数解が存在する ための必要条件であるか ら,逆を調べ十分条件で あることを確かめる。 ←ax²+bx+c=0 の判別 式は D=62-4ac 2(x-1)(x-2)=0, (x-2)(x+3)=0 (INFORMATION この例題の場合,連立方程式 ① ② を解くために,次数を下げる方針で α2 の項を消 去したが,この方針がいつも最も有効とは限らない。 下の PRACTICE 79 の場合は,定数項を消去する方針の方が有効である。 PRACTICE... 79 ④ の方程式ター(k-3)x+5k=0,x+(k-2)x-5k=0がただ1つの共通解をもつ ように定数kの値を定め、その共通解を求めよ。 2020vi S

解決済み 回答数: 1
1/4