学年

教科

質問の種類

資格 大学生・専門学校生・社会人

日商簿記3級の固定資産台帳なのですが?マークの所が分かりません。 また、答えがどうしてそうなるか教えてくださいよろしくお願いします🙏 1枚目が問題文で2枚目の画像を記入する所です。

第2問 20点 (1) 下記の固定資産台帳 (?は各自で計算すること)にもとづいて、 当期 (×7年4月1 日からx8年3月31日まで) における答案用紙の各勘定の空欄にあてはまる適切な語句 または金額を答えなさい。 減価償却は残存価額をゼロとする定額法で行っており、期中 取得の備品の減価償却は月割計算している。 なお、 入出金はすべて普通預金とする。 解答にあたり、摘要欄の勘定科目等は以下から選択して、 ア~クの記号で記入しなさ い。また、勘定科目等はこの設問の中で複数回使用してよい。 ア. 備品 イ.減価償却費 前期繰越 次期繰越 ウ.備品減価償却累計額 キ. 損益 エ. 普通預金 ク.繰越利益剰余金 固定資産台帳(備品) (単位:円) 取得年月日 名称等 数量 耐用 年数 1682000.00 取得原価 期 首 減価償却累計額 期首帳簿価額 当期減価償却費 x2年4月1日 備品A 10年 6,840,000 3,420,000 3,420,000 ? x4年8月1日 備品B 6年 3,960,000 ? ? 660,000 ×7年7月1日 備品 C 1 4年 5,400,000 小 16,200,000 000000 ? SHS ? (サンプル問題2) (2)下記の表の(ア)~(エ)に当てはまる適切な金額を答案用紙に記入しなさい。 ? の箇所は各自 計算すること。 (単位:千円) 期首貸借対照表 1. ? 資産 負債 純資産 8,500 期末貸借対照表 資産負債 純資産 損益計算書 収益費用 当期 純利益 6,000 2. (ウ) 1,500 ? 15,000(ア)(イ) 3,600 8,200 7,500 ? 8,000 (エ) 9,200 300

解決済み 回答数: 2
工学 大学生・専門学校生・社会人

⑷ばんがわかりません。教えて欲しいです

入り [2. 材料力学〕 1 下図に示すように、1本の敷御製棒材 PRが一端を体にRでピン結合され、 他端をPで 剛体棒 OQにピン結合されている。 OP およびORの長さを1.4mとし、秋鋼製棒材 PR の横断面積をA=1.2cm²とする。また、壁OR(y軸)とOQx軸)とのなす角は90℃とする。 点Qに荷重 W=15kN が作用したとき次の設問 (1)~(4)に答えよ。 R 0 Q e W 3l 2 13 (1) 軟鋼の縦弾性係数Fとして最も近い値を下記の [数値群] から選び、その番号を解答 用紙の解答欄 【A】 にマークせよ。 [数値群] 単位:GPa ① 80 ② 106 ③ 150 ④206 ⑤ 240 (2) 軟鋼製棒材 PRに作用する張力Tを求めるための式で正しいものを下記の 〔数式群] か ら選び、その番号を解答用紙の解答欄 【B】 にマークせよ。 [数式群] ① W 2 W W √3W 3W ② ③ (5) 3 √2 √2 「2 IL AE (3) 軟鋼製棒材 PR の伸びを求めるための式で正しいものを下記の [数式群] から選び、 その番号を解答用紙の解答欄 【C】 にマークせよ。 [ 数式群] ◎JMDIA We We 2We 3We ① ② ③ ⑤ 2AE √3AE AE AE √3 We AE -2- 点 Qy軸方向変位y を計算し、 その答に最も近い値を下記の数値群〕 から選び、 その番号を解答用紙の解答欄 【D】 にマークせよ。 [数値群] 単位:mm ① 3.4 54 ③ 6.5 ④8.3 ⑤ 9.4 3wX A = 2.5mm AE >C0545=1.31mm 3×15000×1,4 1.2×104 × 206GRα 0.656 0.909 -3- ◎JMDIA

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題を教えて頂けると助かります。 2枚目はそれまでの解答です。

III page-4 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお, 37 には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答し, 46 には 「①保存力である, ② 保存力でない」 のいずれかを選択して解答せよ。 単位が明記されていない物理量はすべてSI単位の 適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っているものとする。 質量2kgの物体が,軸上を運動している。 物体は時刻t=0において,r= =10の位置に静止して いたとする。 この物体は, ポテンシャルが であるような保存力F を受けている。 U(z)=4z2-48z +144, はじめに, 物体に保存力Fのみが作用している場合を考えよう。 この物体の運動方程式を書くと, dx dt2 37 38 (x- 39 となる。 X =æ- 39 と置いて, 運動方程式を書き換え, Xに対する一般解を求めると, A, Bを任 意の定数として X=z-39 = Acos 40t + B sin 40t, となり, 初期条件を用いることでAおよびBがA=41,B = 42 と求まる。この結果等から, この 物体は 43 <z 10の範囲を運動することがわかる。 また, x=9の位置を物体が通過する瞬間の 運動エネルギーはK= 44 45 である。 次に,Fに加えて, 物体に速度と逆方向に, 大きさが一定の力fが加わる場合を考える。ここで, |f| = 4とする。この力は46 この物体はt=0においての負方向に動き出した後,æ = 47の 位置で一旦停止し, 軸の正方向に向かって運動しだす。 物体があるところで一旦停止した場合, |F|>4であれば保存力Fによって物体は再度動き出し, F≤4であれば静止摩擦力によってその位 置に静止したまま動かないものとする。 物体はt=0で動き出した後に48 回だけ運動の方向を反転 させて軸上を行き来した後, 最終的にはヱ = 49 の位置で静止することになる。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
経営経済学 大学生・専門学校生・社会人

財政学に関する問題です。 国民所得等に関する計算問題なのですが、解答はあるのですが、解説がないためなぜそうなるのか、難しく理解できません💦どなたか教えていただきたいです! ちなみに答えは(1)8 (2)5 (3)6 です!

間3 (5点×3) ある国の国民所得方程式が次のようなものであったとする。 Y = C + c (Y-T) +I+G ただし、 YはGDP、Cは消費のプラスの定数、cは限界消費性向 は税収、Ⅰは民間投資、Gは 政府支出を表し、国際貿易のない閉鎖経済を想定する。 また、c=0.6 であるとする。 この時、以下の (1) (3) 文章中の69 (71 にあてはまる数値をマークして答えなさい。 なお、 計算結果が小数になる場合は、小数第1位を四捨五入して整数で答えなさい。 (1)3兆円の政府支出の増加が行われると(ただし、税収および民間投資は変化せず)、GDPは( 69 兆円増加する。 (2)3兆円の減税が行われると (ただし、 民間投資および政府支出は変化せず)、GDPは (70) 兆 円増加する。 (3) 税収が所得に依存するとして、次のような税関数を想定する。 T = T +tY ただし、Tはプラスの定数、tは税率で、 t=0.2 であるとする。 国民所得方程式のTがこのような税 関数で表される場合に、3兆円の政府支出の増加が行われると(ただし、民間投資は変化せず)、GDP は (71) 兆円増加する。

回答募集中 回答数: 0
1/10