学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

英検要約問題です。 合っているかわからないので教えていただきたいです。

ライティングテストは, 2つ問題 (45) があります。 忘れずに、 2つの問題に解答してください。 この問題は解答用紙 B面の 4 の解答欄に解答を記入してください。 以下の英文を読んで,その内容を英語で要約し、解答欄に記入しなさい。 語数の目安は45語~55語です。 解答は, 解答用紙のB面にある英文要約解答欄に書きなさい。 なお、解答欄の外 に書かれたものは採点されません。 ● 解答が英文の要約になっていないと判断された場合は, 0点と採点されることが あります。 英文をよく読んでから答えてください。 University students often plan for their future careers by attending job fairs or searching online for information about different kinds of work opportunities. There are other ways, too. Some of them choose to join short-term work programs at companies called internships. These have some good points. Students will be able to know more about companies they are interested in, such as what kind of jobs there are and what kind of people are working there. Also, internships allow students to get to know other students. These students can encourage each other both during and after the internship. On the other hand, if students choose to join very short internships, they may not be able to understand the job they are doing before the internships end. Also, students who take part in internships may find it difficult to do well in their studies. 「 ot godonod gods bust $ a mol C eleubiviboi This becomes clear bail of artions of sal Ever, there aaivlovni alusmingo A S agno ad to oild avil zodono88

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

課題の(1)と(2)解き方教えて下さい

抗体検査 例(抗体検査X) 感染症 X に対して、日本人が抗体を持っている割合は40% です。 Aさんは、精度が90% の抗体検査を受けました。 このとき A さんが、陽性となる確 率、陰性となる確率をそれぞれ求めてみましょう。 ここで、 検査の精度とは、抗体を持 っていた場合に正しく陽性と判定される確率、 および抗体を持っていなかった場合に正 しく陰性と判定される確率のことです。 全確率の公式を用いると、 次のように計算され ます。 0.36 P(Aさんを陽性と判定) = P(Aさんが抗体を持っている) P (正しく判定) + P(Aさんには抗体がない) P (判定が間違う) 4 9 = + 6 1 10 10 10 10 42 (42%) 100 Q.x0.9+0.6×0.1 =0.36+0.06=0142 P(Aさんを陰性と判定) = P(Aさんが抗体を持っている)P (判定が間違う) 一本あり(陽性) +P(Aさんには抗体がない)P (正しく判定) 4 1 6 9 58 P(抗体あり)P(P1体あり = 10 + 10 10 10 100 (58%) 0,4×0,9 P(陽性) 0142 0.6 0136 抗体ない 0.9 0.86 0.1 0.1 0.4 抗体あり ではレポート課題です。 陰性 0.58 ・陽性 0.42 0.9 D. I 100 課題(1)(抗体検査Y)感染症 Y に対して、日本人が抗体を持っている割合は 0.1% です。 B さんは、精度が90% の抗体検査を受けました。 このとき、 全確率の公式を用 いて、 B さんが陽性となる確率、 陰性となる確率をそれぞれ求めてください。 (2) さらに、 抗体検査 XとYについての計算結果から、二つの検査にはどのような違 いがありますか? 比較して分かることを述べてください。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
1/75