学年

教科

質問の種類

数学 大学生・専門学校生・社会人

( 1) 絶対値xの範囲はどうやって決めたのですか? おそらくg (x)である分母の部分は絶対に0になってはいけないから0にならんように範囲を取っている。 でもその場合,なぜ開区間(0,π)だけでいいんですか?開区間(π,2π)でもg '(x)≠0【ロピタルの定理の【2】参... 続きを読む

13 ロピタルの定理 分析でてきたら⇒ロピタル 10563 ロピタルの定理 開いて、 0-(1-5) mil 基本 例題 057 不定形 (号)の極限① ★★☆ 以下の極限値を, ロピタルの定理を用いて求めよ。 mil (1−cosx)sinx -0 (1) lim ex-1-x sinhx-x x0 x−sinx (2) lim (3) lim x→0 x-0 sinx-x 指針 0 fin mil いずれも の不定形の極限である。 f'(x) gix). I g'ix) 0-(x-xdnie) mil (E) 定理 ロピタルの定理 αを含む開区間I上で定義された関数f(x), g(x) が微分可能で,次の条件を満たすとする。 [1] limf(x)=limg(x)=0 x→a x-a [2] xキαであるI上のすべての点xでg'(x) ≠0 '(x.doia) f'(x) [3] 極限 lim が存在する。 x-a g'(x) f(x) このとき, 極限 lim x-a g(x) x-a も存在し lim -=lim ig(x) x-a g'(x) f(x) f'(x) が成り立つ。 mil x0 0<|x| <πにおいて {(1-cos x)sinx}' lim lim ...... 【不定形の極限が現れる場合, f" (x), g" (x), f'(x), g" (x), が存在して定理の条件を満 たすならば,ロピタルの定理は繰り返し用いてよい。 詳しくは 「数研講座シリーズ 大学教養 微分積分」 の112~119ページを参照。 解答 (1) lim{(1-cosx)sinx}=0 かつ lim(x-sinx)=0 x→0 mil= nia- (x−sinx)=1-cosx+0 sinx+cosx−cos x drianil [1] の確認。 mil [2]の確認。 x→0 (x−sinx) x→0 1−cosx 0800- N Fox) cosx-cos 2x =lim ① 1−cosx x0 cos"x-sin'x=cos2x -zag() mil ここで ここでLim(cosx-cos2x)=0 かつ lim (1-cosx) = 0 [1]の確認。 x→0 x→0 もう一度 0<x<πにおいて (1−cosx)=sinx=0 [2] の確認。 ロピタルの 選ぼう! また lim a x0 (cosx-cos 2x)' (1-cos x)' 2sin2x−sinx =lim x→0 sinx [3] の確認。 =lim (4cosx-1)=3 x-0 よって,ロピタルの定理により, ①の極限値も存在して3 (1−cosx)sinx に等しいから lim x-sinx x-0 -=3 4sin2x=2sin x cosx (2) lim (ex-1-x)=0 かつ limx2=0 x→0 x-0 x=0において (x2)'=2x=0 [1]の確認。 [2] の確認。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

年齢算の問題です。青ラインを引いた点についてなのですが、何故5人の年齢の和を半分に分けたものが1グループの年齢になるのですか?😭 この部分をもう少し詳しく教えて頂けませんでしょうか。

牛断昇 Who と When が大事! 11 頻出度★★☆☆☆ 重要度★★☆☆☆コスパ★★★☆☆ 現在および過去や未来の年齢について考える問題です。 誰のいつの年齢なのか を見失わないようにしましょう。 1年でみんな平等に1歳ずつ歳をとりますよ。 特別区Ⅰ類2006 PLAY1 年齢算の典型的な問題 両親と3姉妹の5人家族がいる。両親の年齢の和は、現在は3姉妹の年齢 の和の3倍であるが、6年後には3姉妹の年齢の和の2倍になる。また、4年 前には父親と三女の年齢の和が、母親,長女及び次女の年齢の和と等しかった とすると、現在の母親, 長女及び次女の年齢の和はどれか。 1.42 2.44 3.46 4.48 5.50 現在の年齢をxで表して、まずは6年後の年齢の関係で方程式を 立ててみよう! まず、前半の条件について、現在の3姉妹の年齢の和をxとすると、両親の 年齢の和は3xと表せます。 6年後には、両親は2人で12, 3姉妹は3人で18だけ年齢の和は大きくな り、このときの年齢の和について、次のように方程式を立てます。 6x2 6×3. 3x+12=2(x+18) m 3姉妹の6年後 両親の6年後. 3x+12=2x+36 ∴.x = 24 よって、現在の3姉妹の年齢の和は24、両親の年齢の和は3×24=72と なり、5人の年齢の和は 72 + 24 96 とわかります。 み歯

解決済み 回答数: 1
1/16