学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ右の問題では熱量保存則が成り立つのに、 左の問題ではマーカー部の式が成り立たないのでしょうか

チェック問題 2 融解熱 標準7分 水の比熱を4.2J/(g·K), 氷の融解熱(1g融かすのに要する 熱)を336J/gとする。また容器の熱容量は無視できるものとする。 (1) 温度80℃のお湯に温度20℃の水を加えて, 30℃の水6.0Lを つくるには,それぞれの温度の水を何Lずつ混ぜればよいか。 (2)(1)でできた水に0℃の氷を入れたら,20℃になった。氷の 質量は何kgあったか。 解説 (1)(比熱の解法》(p.249)で解く。 図aのように、質量 m,[g], m,[g]を仮定し, 「温度図」 をつくる。 容器の熱容量は無視するので, 容器の熱の出入りは考えてはいけないよ。 吸収熱,放出熱は、 Qm=4.2×m,× (30-20) Qout=4.2×m,× (80-30) 「混合系」なので, Qm=Qoutより. 4.2×m,×10=4.2×m;×50 一方,m,+m,=6000gと合わせて. m,=5000g=5.0kg. m;=1000g==1.0kg よって,20℃の水は5.0L, 80℃の水は1.0L 図bのように、質量 m[g]の氷は,まずア溶ける。次に. ① 20℃まで上昇する。もちろん容器の熱の出入りは無視できる。 Step2 氷が得た熱の和は, Step1 Step2 80℃水m. [g) S Qo。 Step3 -30℃ in 20℃ 水m, [g) Qm 図a 答 (2) Step1 30℃ 水6000g Q=336×m+4.2×m×20 2out -20℃ 氷が溶けたら 水の比熱になるので 1g溶かす熱 0℃水m[g]水 水が失った熱は、 Qout=4.2×6000×(30-20) 「混合系」でQm=Qout 図b Step3 より、 336×m+4.2×m×20=4.2×6000×10 よって, m=600g=0.60kg… 252 物理基礎の熱力学

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

1枚目7.2.3の2段落から式(7.2.25)までの解説がよくわかりません。どなたか教えてください

ーー ^ま ESジンジーレレYバ。 7.2.3 レイリー-ジーンズの式 は無限自由度の調和振動子の集ま りであると解釈できるから (A6節) (7.2.23) 式をそのまま用いて単純に 友, oo とすれば」 真空の比熱は発散してし まう。とすればぱば, 真空は熱浴から無限にエネルギーを得ることになり. 熱平衡状態 は突現し得ない。 もちろん, これは経験事実相容れない. それを認識した上で, あえてエネルギー等分配則が成り立つ場合に予想される幅射スペクトルを求めてみ よう. 1 辺の立方体内の電磁場を考えて周期的境界条件 (periodic boundary com- ition) を課おとにすると 電磁場の波長の整数合がと一致する必要がある こま6 7 をの各成分で成り 立つので, 波数ベクトルを7/(2)合した5 講和 ミたのを十 は無炊元の幣数ペクトル ぁみ となる. したがって, 波数の大きき上がまで の重囲に 合、 対応する整数ベクトア 開にある波数ベクトルの個数は, ヵル/(2r) の場合 ーーードー 0 ポテンシャルエネル "18 格子点上が安定な基準点だとすれば, をこからの変位を qとしたとすき 2人kea (7 20) 式のように 2 数でET のとのBB " 個の原子からなる固体を考える 上 6 としてよい で08計半しBluc 6 6であるが, もちろ

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

流体力学の基礎方程式の中の状態方程式です。 写真2枚目の(4.3)の式がわかりません。 テキストではいきなり結論だけが書かれています。どのようにこの関係式を導出するのかわかりません。 どなたかよろしくお願いします!

} S4 状態方程式 15 ある. これに反して, 気体のような縮む流体では 密度pが未知 数であるから, 吉先および運動の方各式のはかにゃに ぅ 1 ン関係式を求めみなければならない. 8S4 状態方程式 ここでいよいよエネルギーの保存を考える段取りであるが, そのためには熱力学的な考察が必要である. これは。エネル ギー保存則というのは熱力学の第 1 法則にほかならないこと を考えれば, 容易になっとくのいくことであぁろう. そこでわ れわれは, 流体がエネルギー保存の法則を満足するという事 実を別な言葉で表わして, “流体は熱力学の法則にしたがう? と述べることにする. そうすれば, たとえば一定温度の外界 にさらされながらゆるやかに流れる流体では, 状態変化は等 温的におこるであろう. また, ふつうの和気体のように粘性や 熱伝導性の小さいばあいには, 粘性によって発生する熱(軍 動エネルギーが変換するもので, 摩擦熱に相当する) や, 温 度差に応じて伝導される熱は非常に少いから, 状態変化は断 0すなわち等エントロピー 的におこるものと考えられる. 上2のの気体では・ 理想気体の仮定が非常によ ご 人922れ・ る. それゆえ, 状態方程

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

教えて下さい。

@ *Wx で全沖 73%箇8:11 【問 1】 熱容量 Cし, C。 が一定の理想気体を, 図のような, 2 つの断熱準静的過程と, 2つ ア の等積過程によって作られるサイクルを考える. 以下の問いに答えよ. ただしッ= デー を比熱比とする. (第2 回レポート 【問1】 も参照すること) (1) 過程Aつ B.BっつっC,CっつっD.DつA, および1サイクルでの, エントロピーの変化 量を, それぞれの状態における温度 アア4.7ぉ,7C,7p を用いて求めよ. (2)て(7) は, ガソリンエンジンを想定した以下の設定で解答せよ. ガソリンの燃焼温度を 7 = 20007C, 外気温を 7 = 27?C , 空気の定積熱容量 Cr = 1.3JK 比熱比々= 1.4, 燃焼室の容積 編 = 150 cm?, 燃焼室 排気量容積 O 1 =1500 cm3 とする. また, 過程 B つ C では, 温度 77 との熱源から, 過程 D つ A では, 温度 7記 からの熱源から熱の出入りがあるものとし, それ以外の熱源は存在しないものとする. (2) 7ぉ。 7の を求めよ. (3) 過程Bつ C での放熱量 gc, D つ A における吸熱量 Qp。 を求めよ. 3 (4) 1 サイクルでの仕事を求めよ. (5) 3300 rpm での出力を求めよ. (3300 rpm=1 分間に 3300 サイクル) グ ) ) (6) 過程BつC におけるエントロピー生成1 Sco, D つ A におけるエントロピー生成 SpA を求めよ. (7) この熱機関の作業物質と, 2つの熱源を合わせた系*? について, 1 サイクルでのエントロピー変化を求めよ.

解決済み 回答数: 1
1/2