学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

この練習問題分かる方教えてください。

210 空間関係検査問題注意事項 1. この問題は,2種類の検査から成っており, それぞれが交互に5題ずつ計45題 (No. 16~ No. 60) 出題されます。 2. 検査の説明及び練習問題が3~6ページにあり, 本検査問題は7~11ページにあります。 3. 解答時間は正味 25分間です。 4. 問題番号と答案用紙の番号とがずれないように注意しながら、 できるだけ多く解答してくだ さい。 なお,誤答や解答を飛ばしたものについて, 正解数から減点されることはありません。 <例題》 接着面 前 ************************************ 検査の説明 A 1 A 底 B 右 1 2 B 3 4 5 検査I について, やり方を説明します。 AとBは立方体の展開図で,Aの底面(「底」と書いてある面)とBの一つの面を除く各面には模様 が描かれ, それが裏から透けて見えるようになっています。 この検査は,これら二つの展開図を 現在見えている模様が立方体の内側にくるように, 各線を谷折りにして立方体を組み立て, 出来上 がった二つの立方体AとBを, 接着面として指定された面の模様どうしがぴったりと重なるように 接着し,「底」と書いてある面を常に底面として,指定された向きから見えるAの立方体の面が, 指 定された模様になるように,この接着された立体全体を回転させたとき, 指定された向きから見え るBの立方体の表面の模様がどれであるかを判断するものです。 ただし,立方体をある一つの面側から見たとき, その面に相対する面の模様までは透けては見え ないものとします。 なお,接着に当たっては、Aの立方体は動かさず,Bの立方体の方を自由に動 かして、Aの立方体の接着面として指定された模様の面に合わせることとします。また,Aの指定 された面の模様の向きは,実際に立方体を組み立て, 動かしたものとは必ずしも一致しないことが あります。 《例題》では,「 りと重なる向きに接着し(図2), 「 が「前」になるように, A の を向かって「右」方向から見るというものです (図3)。このとき、模様は 「となります。 【練習 1 】 接着面 」は、組み立てた二つの立方体(図1)の 【練習 2】 図 1 【練習 3】 B 接着面 ✓の面どうしを模様がぴった □」は,「底」と書いてある面を底面としてAの立方体 接着された立体全体を回転させたとき、「 B 」は、Bの立方体 右 LOVE 接着面 B A 図2 A 接着面 解き方が分かったら, 練習問題を解いてみてください。 正答はこのページの下方にあります。 《 練習問題 》 A B 接着面 左→ 2 となりますから、 答 3 図3 4 正答 ・右 次のページを開き、検査ⅡIの説明に進んでください。 【練習 1 】 【練習 2】 【練習3】 2016年実施航空管制官採用試験第1次試験 適性 5 3 2 211

未解決 回答数: 1
数学 大学生・専門学校生・社会人

解答見て、どうしてこの答えになるのかは理解できましたが、どうして私の回答が間違いですか?

めよ。 基本 122 れる。 Ax ev 女を をg, とし =1 =71- ) ば 124 1次不定方程式の自然数解 基本例題 xが2桁で最小である組は (x,y)=(1, 等式2x+3y=33 を満たす自然数x,yの組は CHART O SOLUTION 方程式の自然数解 ...... 不等式で範囲を絞り込む 「x,yが自然数」すなわち x≧1,y≧1 (あるいは x>0,y>0) という条件を利 用して、最初からx,yの値の範囲を絞り込むとよい。 別] 基本例題122と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ① において, y ≧1 であるから 11-y≤10 よって 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 ②③から x = 3, 6,9,12,15 ゆえに,等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解x=0,y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ① ② から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから, ① のすべての整数解は x=3k, y=-2+11 (kは整数) と伝定して ..... 0000 | 組ある。 それらのうち である。 |基本 122 [福岡工大] 5組 (x,y)=(112,3) ① の整数解の1つ と表される。 x≧1, y ≧1 であるから よって ≤ks5 kは整数であるから k=1,2,3,4,5 ゆえに,①を満たす自然数x,yの組は『5組 xが2桁で最小となるのはk=4のときであり, (x,y)=(112, 3) このときの組は 3k≧1, -2k+11≧1 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 429 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 2k≧10から k≤5 不等号の向きに注意。 ←xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法 (E ス 免

解決済み 回答数: 1