学年

教科

質問の種類

数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だとわかるのでしょうか…?教えて頂きたいです🙇🏻‍♀️🙇🏻‍♀️

15 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。このタイプの問題は、距離(長さ)の条件から図形を考 えるものが多く、三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 T_PLAY1 方角と距離の条件から図を描く問題 XX 2X 3X 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 Cの家はBの家の真東にある。 ウ Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 .Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は√74kmである。 4.Dの家から駅までの距離は4√2kmである。 5.Fの家から駅までの距離は10kmである。 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア,ウエに着目すると、アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。 位置関係 ②

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だと判断できるのかが分かりません。これはどこからそう考えてるのでしょうか…?どなたか教えて頂けますでしょうか🙇🏻‍♀️🙇🏻‍♀️

が確 かり、 ます。 13 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。 このタイプの問題は、距離 (長さ) の条件から図形を考 えるものが多く、 三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 PLAY1 方角と距離の条件から図を描く問題 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 ア.Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 イ.Cの家はBの家の真東にある。 ウ.Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 エ.Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は74kmである。 4.Dの家から駅までの距離は4√2km である。 5.Fの家から駅までの距離は10kmである。 F 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア, ウ, エに着目すると、 アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

光の干渉の質問です。このような問題でmがいくつから始まるか書いていない時、どうするべきですか? また、2dm×nl=λ/2×2(m-1)の2(m-1)は2mじゃないのはなぜですか?

光 <<さび形> 2 (慶応大) いい <>:*TO* 図のように、ガラス板 A の上にガラス板Bを重ね、 その一方の端にアルミ薄膜をはさみ、 くさび形をした薄い層 POQ を作る。 ガラ ス板Bの上方からガラス板 Aに垂直に単色光を入射させた。 このとき、 上から見ると平行で等間隔の明暗のしま模様が見られた。 (1) 暗い部分のしまについて, しまの本数を左から数えることにする。 このとき、真空中での波長を入とすると, "番目のしまの位 置における薄層の厚さは,およびm とどのような関係にあるか。ただし, ガラス板 A, ガラス板Bおよび薄層物質の屈折率を,それぞれ , B およびと し,それらの大小関係が, (7) NA>n, NB>NL (イ)>>B (ウ) (ア) NA>nn のとき、 干渉条件より、 同位相のとき、弱めあう条件 2 - × 奇数 2 光路差 2dm X NL = = 2 2 偶数 ×2(m-1) 2m-2 固定端反射が 1回あるので, <-- 偶奇が入れ替わる 光路差 = 経路差 × 屈折率 ※このときかける屈折率は, 経路差が含まれる「空気の屈折 ⇔:.dm = (m-1) 2nL dm を求めよ。 の3つの場合について 薄層 (NL < NB) に反射されるので、 自由端反射 ガラス板 B ガラス板 A ガラス A(n^n) 24 y 光 OP Fdm ガラス板 B Q アルミ ガラス板 A P 薄層 アルミ (NL) ル箔 D W RE

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

問の1と2がわからないので教えていただきたいです。 ミクロ経済学の範囲です

問1.ある1種類の財の市場の部分均衡モデルを考える. 財の価格を p, 需要量を za と書くとき, 0p 100 を満たす 価格 p について (1) が成り立つと仮定する. また,この市場において財1単位を供給するために生産者が必要な限界費用は3で一定と 仮定し, 固定費用はないものとする.また, この財の生産量1単位当たり2単位の消費者余剰が減少すると仮定す る. この部分均衡モデルについて, 次の設問に答えよ。 ただし計算過程なども記述すること. Id=200-2p (1) この市場が完全競争市場の場合の均衡供給量, 均衡価格, 社会的余剰をそれぞれ求めよ. (2) 完全競争の場合に社会的に望ましい配分を実現するために必要なピグー税率を求めよ. (3) この市場が独占市場の場合の均衡供給量, 均衡価格, 社会的余剰をそれぞれ求めよ. (4) 独占の場合に社会的に望ましい配分を実現するために必要なピグー税率を求めよ. 問2. 複数期間を生きる家計の費額 貯蓄額の決定について,次の設問にそれぞれ答えよ. この問題では導出過程なども 記述すること. (1) 「第1期」と 「第2期」 の2期間を生きる家計の消費額・貯蓄額の決定を考える. 第1期の所得が 0, 第2 期の所得が300, 利子率が 10% と仮定する. 第t期の消費額をπt で表し, この家計の効用関数を u(x1, 2) = logx1+8log 2 (2) で表されると仮定する (ただし0<81) このとき, この家計の最適消費計画 (zi, i) を求めよ. (2) 「第1期」と 「第2期」 と 「第3期」 の3期間を生きる家計の消費額・貯蓄額の決定を考える. 利子率をrと仮 定する. 第期の消費額を It, 所得を m で表すとき, この家計の予算制約式を求めよ. ただし導出過程に おいて, 第1期の貯蓄額を 81, 第2期の貯蓄額を 82 と表すこと (なお予算制約式はT1,T2,T3, m1,m2,m,r の7つの文字で表すことができる). 問3. 政府はなぜ独占を規制する必要があるのか. 「厚生経済学の第1 基本定理」 の観点から論ぜよ.

回答募集中 回答数: 0