学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理です. 2番と4番を教えてください。 よろしくお願いします

応用物理II R4:課題1(担当:挽野真一) 間1 図1に示したように、バネ定数kの2つのパネ につながれた質量 m のおもりが床と接している場 合を考える。おもりがつり合いの位置から x だけ ずれたとする。原点0をつり合いの位置とすると 点0からxだけずれたとき、おもりと床との間の 摩擦力を無視するとして以下の問いに答えよ。 imm X 0 図1 バネ定数 kの2つのパネに質量 mのおも りがついている。. (1) おもりの運動方程式を立てよ。 (2) (1)の運動方程式の一般解を求めよ。 (3) 初期条件として、時刻1=0 のとき、x(0) = 0, dx =%を満たす解を求めよ。 問2 図のように、パネ定数kのバネに質量 m のおもりをつけた。バネが つり合いの位置にあるとき、おもりの位置は yo であった。おもりの位 置がyになるまで下に引っ張って、おもりを静かに放した。以下の問い に答えよ。ただし、重力加速度をg、空気抵抗は無視できるものとする。 (1) おもりの運動方程式を立てよ。 (2) (1)で立てた運動方程式の一般解を求めよ。 (3) おもりの速度がゼロとなる時刻を求めよ。 Yo y 問3 直線状に2つの同じ原子が結合している水素 H2 分子の振動現象を考える。ここでは、簡単のた め原子間の結合はバネ定数kのバネで結合されているとし、水素の質量を m として以下の問いに 答えよ。重力の影響は無視してよい。 (1) 図に示すように各原子が変位しているとして、各原子の運動方程式を立てよ。 (2) (1)で立てた運動方程式から分子の角振動数を求めよ。ただし、分子の重心は静止しているとし てよい。ヒント:原子間の相対運動を記述する運動方程 式に変形すると単振動の式と同じになる。 (3) エネルギー等分配則によって、温度 T の熱エネルギ ーkT/2 が振動のエネルギーになっているとして、その時 の振幅を求めよ。 水素 水素 imó X。 図、水素分子の古典モデル。 間4 質量mの質点がx軸方向に保存力Fを受けて運動するとき、質点の運動方程式は mx= F と与えられる。この運動方程式から力学的エネルギーが保存することを示せ。 00 m

回答募集中 回答数: 0