学年

教科

質問の種類

数学 大学生・専門学校生・社会人

⑵の〜がohベクトルだから というところがなぜそうわかるのかがわからないです。教えていただきたいです🙏

●11 aOA+6OB+c0C=D0- 原点0を中心とする半径1の円周上にある3点A, B, Cが条件7OA+50B+30C=D0 を満た すとき,次の問いに答えよ。 ト(1) ZBOCを求めよ。 (2) 直線 CO と直線 AB の交点をHとするとき, OH を OC を用いて表せ、 (3) AOHB の面積を求めよ。 (島根大·総合理工ー後/一部略) a0A+60B+cOC=0 の使い方 0を中心とする半径1の円周上に A, B, Cがある……☆ という条件が効いてきて△ABC の形状が決 まる(O3では △ABCの形状は決まらない).☆, すなわちOA=OB=OC=1 を使うために 70A+50B=-30C などと変形(どれか一つを右辺に移項)して各辺の大きさの2乗を考える: 170A+50B|P=|-30C|P ○3のaPA+6PB+cPC=0 と同じ形であるが, この例題では, : 49|OAP+70OA·OB +25|OB P=9|0C|P 700A-OB=-65 49+700A-OB+25=9 OA-OB=-13/14 これより OA と OB のなす角の大きさ(cos ZAOB=-13/14; OA=OB=1 に注意)が求められる。 (1)では,ZBOCを求めるので5OB +30C=-70A として各辺の大きさの2乗を計算する。 言解答 70A +50B +30C= D0 (1)のより,50B+30C=-70A : 150B+30CP=|-70AP : 25|OB|P+30OB·OC +9|0C|P=49|OA|P 10A|=|OB|=|OC|=1だから, 0 1 1 A B 1 OB-OC 2 25+30OB·OC+9=49 ニ [O3と同じとらえ方をすると] のの始点をCに書き直して, OB-OC 1 ZBOC=60° 2' よって cosZBOC= 7 lOB||OC| CA+ 15 15 CB CO= (2) Oより, C -CA + 5 -CB 12 12 OC=- 1 (70A+50B) 12 -(70A+50B)=-4· ミー- 3 これのカッコ内が CH 0 )60° m wm が OH だから, OC=-4OH B つまり,CO=CH. この式の A H 120° -oC 4 1 4 始点を0にすると OH=--oc 4 OH が得られる。 (3)(1)より ZBOH=120°, (2)より OH= OC= = となるので, 4 /3 V3 1 -OH·OB·sin120°: 11 24 AOHB= 2 16

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学・ハイゼンベルクの交換相互作用についての問題です。 参考書を参考に(あ)〜(え)まで解いてみたのですが、考え方はあっていますか? また、(お)以降の解説をお願いします。ブロッホの定理やフーリエ変換はどのように効いてくるのでしょうか?

III. 以下の文章のあ き の枠内に当てはまる数式や記号を答えよ。 ヘ =1として,スピン角運動量1/2をもつ三つのスピンが,互いに相互作用している系を考え る。スピン演算子を$, S,, $, とすると,系のハミルトニアンは次のように与えられる。 自=-J(S, S+ S,. S。+ $。. S.), J>0. ここでも番目(;= 1,2,3) のスピンのz,9, z 方向成分をそれぞれ好,S, S とする。スピン演算 子の間には (S, SY] = iS}, [SF, SY] = 0などの交換関係が成り立つ、自) = E\d) を満たす。 固有エネルギーEとエネルギー固有状態|)を求めたい。 全スピン角運動量 Shot = $, + $2+S。を使うとハミルトニアンは次のように書き直すことが できる。 自= - + JC, 定数C= あ 'tot このことから基底状態のエネルギー固有値は 時の固有値は S= +1/2, -1/2 のニつであり,これらに相当する1スピン状態をそれぞれ↑。 ↓と記すと,3スピン状態は,|S{ S S3) = |M1),| t)などのように表すことができる。独 立な3スピン状態は全部で 具体的にエネルギー固有状態をあらわしてみよう。 まず基底状態のうちで Sto = St+ Sz + Sg が最大の状態は |S S; Sg) ちに書き下すことができる。 つぎにエネルギー固有状態のうちで Sie = 1/2 のものを求めたい,ハミルトニアンと交換可 能な演算子はハミルトニアンと同時固有状態をもつことを利用する.このような演算子の一つ にスピンをRIS; S; S) = |S; S; S;)のように巡回置換する演算子良がある。-iとなるこ とと,周期系におけるブロッホの定理やフーリエ変換を思い出すと,Rと St。と自の同時固有 状態は適切な定数A(複素数も含む)を用いて い である。 う 種類あり,規格直交基底をなす。にれらの線形結合の形で え のように直 三 る(「4)+A|)+ ^°| +t) V3 と表せることが分かる。Aの取り得る値をすべて列挙すると 底状態となるのは A- か 以上の結果からすでに二つ基底状態が得られた。残りの基底状態を列挙すると, お となる.このうちで,基 の場合である。 き と なる。

未解決 回答数: 1