学年

教科

質問の種類

物理 大学生・専門学校生・社会人

お助けをm(_ _)m

B 【問5】 (第1回レポート 【問4】 の続き) 図のように, 温度 T の環境下で、 取手のつ いたピストンがある容器の下側に物質量 n の理想気体が封じ込められていて, 容器の 上側は真空になっている. 気体は容器を通して外界との熱のやりとりは自由にできる ものとし、ピストンの質量は無視できるほど小さく, 滑らかに動かせるものとする. ピ ストンの取手の上におもりをのせてあり, 気体の体積はV」 となっている. 以下の 問いに答えよ. (i) おもりAがのっている取手の上に, 追加でおもりBをのせるとピストンはさら に下降し、しばらくしたのちピストンは静止して気体の体積がV2 となった. こ の状態変化に伴うエントロピーの変化量 AS1 2 を求めよ. (ii) おもりBだけを取り除くと, しばらくしたのち気体の体積は V1に戻ってピストンは静止した. この状態変化に伴うエ ントロピーの変化量 AS2→1 を求めよ. (iii)(発展問題) (i) (ii) それぞれの過程でのエントロピー生成 7 Sgen1→2, Sgen2→1 を求め,これらの過程の可逆性を論 じよ. (iv) (発展問題) おもりAがのって熱平衡である状態1と, おもりBがのって熱平衡である状態2の間における, ヘルムホ ルツの自由エネルギーの差 AF1→2= F2 - F1 を求めよ. (v) (発展問題) 状態変化 1→2の間に, おもり AとBの位置エネルギーが気体に与えられる. これと (iv) で求めた AF1 2 との差は何を表しているのかを議論せよ. *4 ガソリンエンジンの熱力学的モデルとされるサイクルである. C→Dが可燃性混合気の圧縮, DAが燃焼, AB が膨張, B→Cが排気・吸気 に対応する. DAにおける吸熱は温度 TA の熱源から, BCにおける放熱は温度 T の熱源へ 瞬間的に行われるものとする, *5 仕事は、体積変化に伴って圧力がするものだけとする. *6 実際のガソリンエンジンでは,過程DAでのエネルギー流入は, 熱源 A からの熱流入ではなく、 ガソリン燃焼によるエネルギー流入である. Q *7 過程 A B において, 温度 T の熱源から熱Qを受けとるとき, Sgen = (SB-SA) - T

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A5の問題の答え教えていただきたいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A1(1)~(7)教えて欲しいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0