学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数学IIIです。青チャート例題282 下の問題が全くわからないのでわかりやすく教えていただけないでしょうか?

459 重要 例題282 共通部分の体積 両側に無限に伸びた直円柱で, 切り口 が半径aの円になっているものが 2 つある。いま,これらの直円柱は中心 中心軸 π 軸が一の角をなすように交わってい 4 るとする。交わっている部分(共通部 8章 分)の体積を求めよ。 [類 日本女子大] 40 基本270,271 体 積 指針>重要例題 281 と同様に立体のようすはイメージしにくいので, 断面を考える。 立体の体積 断面積をつかむ ここでは,中心軸が作る平面からの距離がxである平面で切った断面を考える。直円柱は, その中心線と平行な平面で切ったとき, 断面は幅が一定の帯になる。したがって, 帯が重 なっている部分の断面積を考える。 解答 2つの中心軸が作る平面からの距離がxで ある平面で切った断面を考える。 の幅2/αーx° の帯が角-で交わっている /π )4 C 4 2- 1 から,その共通部分は1辺の長さが 2ー/2-2v/2V-x のひし形である。 切断面のひし形の面積は 2/21αーx·2/ー 「TI )4日 真横から見た図 Va? E42 (α-x) x よって,求める体積を Vとすると, 対称性から V=2),4/2 (αーズ)dx 3 16/2 3 練習 4点(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) を頂点とする三角錐を C, 4点 282 (0, 0, 0), (-1, 0, 0), (0, 1, 0), (0, 0, 1)を頂点とする三角錐をx軸の正の 方向にa (0<a<1) だけ平行移動したものをDとする。 「のとき CとDの共通部分の体積V(a) を求めよ。 また, V(a) が最大になると +C650 レ 。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください!全然分かりません!

位角と見上げた角度で表して考えることにした。 水平面での角度であり, 例えば, 北東の位置の方位角は 45°である。 見上げた角度は飛行機を見上げたときの角度と さ西 視線の方向 し,例えば、視線の方向と水平面に平行な面でで きる角度が_50-のとき, 見上げた角度は「50°で あるとする (図1)。 50° 以下の会話文を読んで, 次の問1~問3に答え 見上げた角度 なさい。ただし, 観測をしている間は, 飛行機は 一定の速さで一直線上に進み, 高度は変わらない ものとする。また, 目の高さは考えず, 高度は水 水平面 図1 平面からの高さとする。 達也さん「方位角120° の地点 Aの上空を飛行機が飛んでいるとき,見上げた角度は 30°だった。その後,方位角.90°の地点Bの上空を飛行機が飛んでいるときは、 見上げた角度は 45° だったよ。」 四Om 静香さん「学校の地点を0として上空から見た図をつくると図2のようになるね。飛 行機の進行方向の方位角は, 図2の直線を点0を通るように平行移動したと きの進行方向の位置の方位角になるから, この Zxの大きさを求めればわか るんじゃないかな。」 達也さん「じゃあ, まず飛行機の高度をん (m)としよう。飛行機が通過する地点 A, B の上空をそれぞれ P, Qとすると図3のようになるね。」 静香さん「△OAP, △OBQは直角三角形だから, OB=h(m), OA= ア le (m) だね。」 達也さん「図4のように, Aから南北の直線に垂線をひいてその交点をH, Bから HA に垂線をひいてHAとの交点をLとしよう。 すると, HA=| イ |h (m) となるね。これで, Zrの大きさが求められそうだ。」

回答募集中 回答数: 0