学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

この問題の解答のA+B=C+Bが(1)のところでは14になっていて(2)の所では13でした。 何故こうなるのか分かりません。 Dが持ってる本数が10本に決まると解答に書いてあります。 なぜ10本になるのか分かりません。 教えてください。

[No.202] 正答 5 2034aで割ったときの共通の余り とする。このとき、 20 = am+y① 34an+y ② と表すことができる (mは20を4で割った では34で割った商)。 ②から①を 辺々引くと. €761 14 = a(n-m)!! となる。これはα (およびヵ-m) が14の約 数であることを意味する。 よっては1. 2. 7. 14 のいずれか。 ただし, 20 がαで割 り切れてはいけない ( 0 だと 「26をで 割った余りがそれ(r) より小さい」ことに反す る)ので,αとして考えられるのは7か14 α=7のとき: 20を7で割ると余りはy=6。 一方26を 7で割ると余りは5で、これはより小さ いのでOK。 14 のとき: 2014で割ると余り=6。 一方26を 14 で割ると余りは12で、 これはより大 きいので不適。 よって求める余りは5である。 【No.203】 正答 5 A~Eが持つ本数をそれぞれA~E (本) とする。 A~Eは順不同で2, 4, 6, 8, 10に対応 する。 いまCはEの2倍なので [E=2, C=4] 「E=4,C=8」 のいずれかである。 (1) E=2.C=4のとき: [ms.601 仮定よりE以外の4つの数はA+B= C+D を満たすが、 E以外の4つの数の 合計は4+6+8+10=28なので、 A+B=C +D=14 となり、これより D-10 となる。 (さら A. Bは順不同で68) (2) E=4,C=8のとき (1)と同様に考えると、E以外の4つの 数の合計は2+6 +8+10=26なので。 A+B=C +D=13 " 8 になるが、これではDが5になるので 不適。 よってDが持っている本数は10本に決 まる。 【No.204】 正答 1 ax bxc = 180 .... ① は3の倍数なのでa=3k とおける o は整数) bとcの最大公約数が2なので b=2B.c=2C (BとCは互いに素) とおける。これらを①に代入すると. (3k) ×2B×2C=180 ∴. k×B×C=15...... ② となる。 これよりk. B. C は 15の約数で あり、 よって 1. 3. 5. 15 のいずれか。 α(=3k) とb(=2B) の最小公倍数が18 (23) なのでもBも5の倍数ではな く.またkとBの少なくとも一方は3の倍 数である。 これに注意して ② をみると、② 68- 1×3×5 または 3×1 ×5 のどちらかになる。前者だと k=1. B=3 よりα=3.6=6となり、これらの最小公倍 数は6になるので不適。後者ならk=3. B =1よりa=9.6=2になり、確かに最小公 倍数は18である。 以上により a=3-3=9 b=2-1=2 c=2-5=10 に決まり、これらの和は9+2+10-21で

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数Iの一次不等式の問題です 果物の個数が(4x+26)個になるのはわかるけど、 9(x -1)と9xのところが何故そうなるのかがわかりません

問題33 1次不等式の文章題への応用 何人かの子どもに果物を配る。 1人に4個ずつ配ると26個余るが, 1人に 9個ずつ配っていくと最後の子どもは果物はもらえるが他の子どもより少 なくなる。 子どもの人数と果物の個数を求めよ。 思考プロセス 未知のものを文字でおく 子どもの人数、果物の個数のどちらかをxとおく。 子どもの人数をxとおく 果物の個数をxとおく → 子どもの人数は x-26 4 子どもの人数をxとおいた方が, 簡潔に表すことができる。 Action » 文章題は、 未知のものをxとおいてその変域に注意せよ 解 子どもの人数をx人とおくと, 果物の個数は ( 4x+26) 個 である。 xは自然数である。 これより すなわち ①を解くと ②を解くと 9(x-1)<4x + 26 <9x_ J9(x-1)<4x+26 14x+26 <9x x < 7 x> 26 5 26 5 < x <7 3 果物の個数は 4x+26 4 ③ ④ より この不等式を満たす自然数xを求めると このとき, 果物の個数は 4x+26 = 4.6 +26 = 50 子ども6人, 果物 50個 したがって Point... 文章題の不等式による解法の手順 ① 未知のものをxとおく。 (2) xの式で表せるものを考える。 大小関係を不等式で表す。 (4) (連立) 不等式を解く。 (5) ④ の範囲の中から適するxの値を求める と1人に9個ずつ配ると最 後の子どもも果物をもら えるから x=6 9(x-1)<4x +26 最後の子どもは他の子ど もより少ないから 4x+26<9x よって 9x-8 ≦4x+ 26 ≦9x-1 としてもよい。 26 0 = 5.2 であるから, 5 5.2 < x < 7 を満たす自然 数xは6 子どもの人数をx人とおく 果物の個数は (4x+26) 個 9(x-1)<4x+ 26 < 9x E

回答募集中 回答数: 0