学年

教科

質問の種類

物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

下線のウの直角三角形の直角を挟む2辺の長さが1cmであることは理解できたのですが、どうして片方が4分の3になるのかがわからないため、もしわかる方いましたら教えていただけると嬉しいです。 よろしくお願いいたします。

実戦問題1の解説 No.1 の解説 ア、イ、ウの面積の合計 STEP① ウの面積を求める 図Ⅱのア、イ、ウの三角形はいずれも相似で,相似比は4:3:1であ る。 アより,これらの直角三角形の直角をはさむ2辺の比は4:3であるか 3 らウの直角三角形の直角をはさむ2辺の長さは1cm 3 したがって,ウの直角三角形の面積は1×1 x 4 STEP② 面積比を利用する』 3 3 ウの面積の合計は12(16+9+1)= 8 3 cm (ウ) 5. ABCE = 1/2 ら, ア, イ,ウの三角形の面積比は4:32:12=16:9:1だから、ア, イ, 39. (ア) B -x26= 7 cm △BCE=×8×2=8[cm²〕, 1 cm (イ) 4 cm 3ア A 3 ウ 8 3 cm 4 →問題はP.284 [cm〕である。 m²となり,4が正しい。 2014ってどうして -cmである。 1 cm 4 cm No.2 の解説 △BDEの面積 STEPO 底辺が共通な三角形の面積比を利用する CCLA △BCEと△ADEは,底辺をそれぞれBC, ADと考えれば,底辺は共通で 面積比1:2はそのまま高さの比6cmを12 (2cmと4cm) に分けること になる。 同様にして △CDEと△ABE についても8cmを1:32cm と6cm) に分けることになるか X CHEROma |XV| 分かるの? -8cm 6 cm 4 cm 問題はP284 12cm、 D 16cm

未解決 回答数: 1
数学 大学生・専門学校生・社会人

やさしい理系数学例題3(2)整数分野の証明問題です。 模範解答の意味は理解できますが、16で割ったあまりで分類しようと考えるに至る過程がわかりません。

あり、その最大数はab である。 この定理について興味のある方は, 「ハイレベル理系数学」の例題3と演習問題 14 を参照されたい. 例題 3 正の整数a,b,cが a+b2=c2 をみたすとき,次の (1), (2), (3) を証明せよ . (1) a, b のいずれかは3の倍数である. (2) a,b のいずれかは4の倍数である. (3) a,b,cのいずれかは5の倍数である. 考え方 任意の整数は, 3m, 3m±1 (mは整数) などの形で表せる. 【解答】 (1) 任意の整数は3m,3m±1 (m∈Z) のいずれかの形で表せ, (3m)2 = 0, (mod3) (3m±1)²=1. よって, a, b がともに3の倍数でないとすると, ∫(a2+62)÷3の余りは,2 lc²÷3の余りは, 0,1 であるから, a2+b2=c2 となり矛盾. ゆえに,d2+b2=c2 のとき, a, 6 のいずれかは3の倍数である. (2) 任意の整数は 4m, 4m±1,4m+2 (mez) のいずれかの形で表せ , (4m)²=8.2m² = 0, (4m±1)²=8(2m²±m)+1=1,9, (mod16) (4m+2)^2=8(2m²+2m)+4=4. よって, a, b がともに4の倍数でないとすると, 背理 (a²+62)÷16の余りは, 2, 5, 8, 10, 13 lc²16の余りは, 0, 1,4,9 (5m)2 =0, (5m±1)' = 1, (mod5) (有名問題 ) (5m±2)²=4. よって, a,b,cがすべて5の倍数でないとすると, (終) なぜood 16 で分類しょうと 考える 光に平方数で割った余りを であるから, a+b2=c2 となり矛盾. ゆえに,a+b=²のとき, a,b のいずれかは4の倍数である. (3) 任意の整数は 5m,5m±1.5m±2(m∈Z) のいずれかの形で表せ, (終)

未解決 回答数: 1