学年

教科

質問の種類

化学 大学生・専門学校生・社会人

【急募】 大学の一般化学(量子力学)の問題です。 波動関数とか、ハミルトニアンとか、、、 わかる問題だけでもいいので解説をお願いします🙇‍♀️🙇‍♀️

全 xce 以下の問題に答えよ。 文字の定義は授業と同じ。 (1) 水素原子における電子のハミルトニアンは,次のように表される。 H² (2 0 - (1² or) + A = - 2me ər (3) • ● Cear HA EGERSAR 0. ●(r, 0,y) = Cerがシュレディンガー方程式の解になるようにαを定め, エネルギー固有値を求めよ。 答えはボーア半径 (do AREOR² = ト) を使った表記とすること。 meez (1,0p) = Crer coseがシュレディンガー方程式の解になるようにβを定め、エネルギー固有値を求め よ。 答えはボーア半径 (a 402. m₂e² を使った表記とすること。 ・規格化定数を求めるために以下の計算を行う。 空欄 ①~③を埋めよ。 以下の問いに答えよ。 AT THE ARE ● = 1 a 1 ²sine 00 (sines) + ²in²00²)- ressin20a2 Sy2dt = fffy2r2sin0drdodyを変数分離し,各変数ごとに定積分を行う。そ に関する定積分を実行すると (1) (B)-SIEDS F 9 に関する定積分を実行すると CARTE* ONE 31011218018 積分公式Sorne-br drを使ってrに関する定積分を実行すると 従ってC=1/√32ma5 水素様原子のシュレーディンガー方程式は 1²/10 a 1 ə rasino ao (1-²2 20 (²²0). + ər arl 2m (2) 水素原子における1s軌道の波動関数は Cer/ で与えられる。 ただしは規格化定数である。 動径分 VEAU 布関数電子が原子核から距離rの球面上に存在する確率密度) の極大値を求めよ。 HOFFE HISENSE CO 2 SMERES a sino 200+ E = 4πεr 1 2² Ze² y(r,0,9). ressin2002 4πεor である (ポテンシャルエネルギーの項で, e2がZe2になっている)。 以下の問いに答えよ。 100 Jy² dr VEEBR 3 TERENGUKS GA ここで各原子 (4) H2分子の分子軌道を水素の1s原子軌道XA XBの線形結合↓ =CaX^+ CaXで近似する。 軌道の中心はそれぞれ原子核 (H+) A, B である。 1電子エネルギーの期待値は=(2) Syd_cha+Cfa + 2CACBβ (8− 1)\1 = (x1 T4² dr C+C E = で与えられる。 ただしα, βはそれぞれクーロン積分, 共鳴積分であり、重なり積分は無視している。 ERSACERO 以下の問いに答えよ。 (1) Eが最小になる条件から永年行列式を導け。 永年行列式を解いて、 結合性軌道のエネルギーを求めよ。 1 514 r' =Zrとおいてrとp(r', 0,p)を用いたシュレディンガー方程式を書け。 水素原子の規格化された原子軌道とエネルギーをそれぞれce", Enとして, 水素様原子の1s軌道 のエネルギーと規格化された波動関数を求めよ。 答えにC, α, Enを使ってよい。 C²+C² (r,0,0) = E(r,0,9) (5) 異核2原子分子 AB の分子軌道を原子軌道XA XBの線形結合 = CAXA CBXBで近似すると, 1電子工 ネルギーの期待値は Sdr_chan+Cfap+2C^CBβ TOUCU BOUCA

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0