学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

英語の問題です。 教えて欲しいです🙇‍♀️

(2) I had my teeth 1 check 1( )に入る最も適切な語句を ① ~ ④から選びなさい。 (1) He went on speaking as if she ( 1 can't 2 hasn't ) there. Son 3 wouldn't ) by a dentist this morning. ult niles 3 checking wahiwon (青山学院大 ) ④weren't pomibinand (岩手医科大) 24 to check 2 checked (3) You should not keep any pets ( 1 after 2 unless ) you can take good care of them. 3 when (中央大) ④which 1 as 2 in ) all be correct. ②anytime (6) If the weather ( ①must have been (4) This town will change ( ) another ten years. (5) Those may not ( 1 absolute ) fine yesterday, I would have done the laundry. 2 is (7) Studying takes up a lot of my time during the week, ( ) little time for hobbies. (芝浦工業大) since 3 of (國學院大) 3 everything ④necessarily (関西学院大 ) ③ wasn't 4 had been (皇學館大) ①1 has left (8) Have you heard the rumors ( 1 that 2 what leaves leaving 4 left ) Susan has returned to this town? ③ which (麗澤大) ④ who 1 by (9) What was found in this experiment is ( 2 for (10)( ) what to say, she remained silent. ) great importance to researchers. 3 in (立命館大) 4 of (愛知工業大) 1 Not knowing 2 Being not knowing ③No knowing ④Knowing no (11) I tried to ( 1 have 2 make ) her to tell me what happened last night. 3 get (十文字学園女子大) 4 let How gimon and (12) Do what you like, as ( 1 far 2 much B in 1 in 2 with bnat am ) as you leave me alone. 3 long (13) This tool is dangerous. Please read the instructions ( (14) If I hadn't drunk so much last night, I ( 1 feel (15) I wish you 1 attend (16) If I ( 1 were ) 2 will feel ) the party yesterday. 2 were attending ) much better than I do right now. ③ would feel ③ have attended (中京大) 4 would have felt (目白大) ④had attended ) in your situation, I would be more careful about what you post on social media. (フェリス女学院大) 4 many ) care. (聖隷クリストファー大) at ④take gwol 3 will be (南山大) ④would be

回答募集中 回答数: 0
資格 大学生・専門学校生・社会人

業務的意思決定の自製か購入かの意思決定で、固定費について差額原価か埋没原価か判断する基準というのは何かありますでしょうか? 問題分の注意書き以外にも差額原価がある場合があって解答を出すのに困ってます 何かありましたら教えていただけるとありがたいです。

月の実際直接作業時間は第2加工工程が2,450時間、 組立工程が3,300時間であり、 は15,000,000円とする。 当月の半製品p1の月末在庫量は、450個であった。 この修正された条件にも 答案用紙の仕掛品勘定を完成させなさい。 問題 (25点) 原 価 計算 KNG工業では製品Rを製造している。 製品Rには部品Xが必要であり、 部品 Xは東京工場の第2製造部において 組み立てられている 1. 部品Xの単位製造原価データ 甲直接材料費 直接労務費 変動製造間接費 固定製造間接費 合 計 2,000円/kg × 3,000円/時 1,200円/時 2kg/個 = 4,000円/個 × 1時間/個 = 3,000 × 1時間/個 1,200 1,500円/時 × 1時間/個 == 1,500 9,700円/個 2.部品Xの購入案 KNG工業では次期の予算を策定中であるが、 かねてより取引関係のあるH製作所から、 部品Xを1万円で売 りたいという申入れがあった。 3. 原価計算担当者の調査 (1)部品Xの需要は13,500個から14,500個の間にあり、14,000個の可能性が大である。 (2) 部品の製造は臨時工を雇って行ってきたため、もしこの部品を購入に切り替えれば、臨時工は雇わないことになる。 (3) 第2製造部で発生する固定製造間接費発生総額3,000万円の内訳は次のとおりである。 ア 共通管理費等配賦額 916万円 イ 機械の減価償却費、固定資産税、 保険料等 300万円 ウ 部品 X専用製造機械減価償却費 (注1) 200万円 エ部品Xに直接関連する支援活動費 (部品 X設計変更費) 275万円 オ部品Xバッチ関連活動費 759万円 (専用製造機械段取費、 専用検査機械賃借料など) (注2) カ 第2製造部長給料 (注3) 550万円 (注1) 購入案を採用する場合、 X専用製造機械は売却せず、遊休機械として保持する。 (注2) 購入案を採用する場合、 X専用検査機械は不要となるため賃借しない。 (注3) 購入案を採用する場合、 第2製造部長は子会社に出向となる。 〔設問1]以上の条件にもとづき、 原価が安ければ購入に切り替えるものとして、 次の問いに答えなさい。 〔問1]今後1年間における部品Xの総需要量が何個を超えるならば、この部品を内製する方が有利か、あるいは購 する方が有利かを判断しなさい。 [問2〕 H製作所では部品の売込みにあたり、 新たに次のような条件を提示した。 総購入量 売価 1個~ 12,000個 1万円 12,001個~ 13,000個 0.8万円 13,001個~14,000個 0.7万円 14,001個~15,000個 20.6万円 15,001個以上 20.5万円 たとえば総購入量が14,000個であれば、最初の12,000個は@I万円、次の1,000個は@0.8万円、最後の1,00 第3回 ⑤

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0