学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

今からこの問題のテストがあります! 答えを教えて頂きたいです!

I. mani"X" bnt Quiz 1al insmatste pniwallolantOpel llsw art no ftel mooooysterio Fill in the blanks with the appropriate words or phrases to match the following statement. 01. インターネットのない生活なんて想像もできない。 ) hardly imagine life without the Internet. ) 1 g to brossert) asyl as all anoutalbBQ rexland bed new pail nail art Innil bonteal V 30 ns ahenda sill lent benelque asinspo dT 80 nuzelmibe jut eg lon ed of ar leum and TO asamem Viimist lie yd have 02. コックピットは安全な場所どころではない。 The cockpit ( ) ( ) ( )( )( ) place. 03. 電話を切るやいなや、 また電話が鳴った。 No sooner ( ( oyoT yd ourpoind aew | 80 beaute all tudominib otomoomin bates Wo Hood art stelgmus al emot ansay wool 1.01 ) hung up than the phone rang again. 04. 愛というものは、言わば、心のための栄養である。LIGHmment na ro Love is, so ( ) ( ), a nutrient for the heart. bongenadyeing alt 05. 彼は毎晩誰かが事務所に残っていたらよいと提案した He ( ) that someone stay in the office every night. Vew art to to slam of soigston art live to draw all Co 06. 担保付きのローンから始めた方がよいと勧めたい。 I would ( ) that you start out with a secured loan. hom yde slevou a to poles conse of categ 07. 「ご用は承っておりますか」 「ありがとう。 ただ、 ぶらりとみているだけです」 "Are you (m) (i)?" "Thanks. I'm just browsing." nort 08. 先生が見えるまで、ロビーでお掛けになってお待ちになってください」 ) in the lobby while you wait for the doctor to arrive!" “Please be ( 09. パソコンがあれば、こんな手間はすべて省けますよ。 (パソコンを使えばこの手間はすべて省ける) Als) (c) you all this (c). A personal computer ( 10. 雨が激しく降っていたにもかかわらず、彼女は仕事に行った。 ) ( ) the heavy rain, she went to work. ( )( TO

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

下線部(1)の文構造が分かりません。特に2行目の文構造が分かりません。強調のdoであることは分かりますが、その後のthat以降が関係詞?かすらも分からないので、誰か教えて下さい!

次の英文は1991年に出版された本からのもので、 研究分野としての「人工知 能」 (Artificial Intelligence) について述べています。 下線部(1)~(3)を日本語に訳 しなさい。 What is Artificial Intelligence (AI)? Just about the only characterization of Al that would meet with universal acceptance is that it involves trying to make machines do tasks which are normally seen as requiring intelligence. There are countless refinements of this characterization: what sort of machines we want to consider; how we decide what tasks require intelligence and so on. One of the most important questions concerns the reasons why we want to make machines do such tasks. AI has always been split between people who want to make machines do tasks that require intelligence because they want more useful machines, and people who want to do it because they see it as a way of exploring how humans do such tasks. We will call the two approaches the engineering approach and the cognitive-science respectively. (2) (1) approach The techniques required for the two approaches are not always very different. For many of the tasks that engineering AI wants solutions to, the only systems we know about that can perform them are humans), so that, at least initially, the obvious way to design solutions is to try to mimic what we know about humans. For many of the tasks that cognitive-science Al wants solutions to, the evidence on how humans do them is too hard to interpret to enable us to construct computational models, so the only approach is to try to design solutions from scratch" and then see how well they fit what we know about humans. The main visible difference between the two approaches is in (3) their criteria for success; an engineer would be delighted to have create something that outperformed a person; a cognitive scientist would regard it as a failure. -1- M7 (492-61

未解決 回答数: 1
数学 大学生・専門学校生・社会人

多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む

1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅).

未解決 回答数: 0