学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

確率の勉強をしている学生なのですが、この問題が分かりません。どなたか教えていただけませんか。

練習問題 1.8 (積率母関数) X を非負の確率変数とし, x(t) = Eetx は全てのt∈ に対して有限であると仮定する.さらに,全てのt∈ R に対し E [XetX] < ∞ であると仮定する.この練習問題の目的は, '(t) = E [Xetx] で あり、特に'(0)=EX であることを示すことである。 微分の定義, すなわち次式を思い出そう. 4'(t) = lim x(t) - (s) lim st t-s st EetxEesx t-s 「etx = lim E st t-s 上式の極限は,連続な変数sについて取っているが,t に収束する実数列{8}n=1を 選ぶことができ, 次を計算すればよい. 「etx e³n X lim E sn→t t-Sn これは、次の確率変数の列 etx -enx Yn = t-Sn の期待値の極限を取っていることになる.もしこの極限が, t に収束する列{Sn}=1 の選び方によらず同じ値になるならば、この極限も limotE [ex と同じで,そ れは '(t) である. .tx sx ← -e t-s 解析学の平均値の定理の主張は,もしf(t) が微分可能な関数ならば、任意の実数 s ともに対し,stの間の値の実数0で次を満たすものが存在するというものである. f(t)-f(s) =f' (0) (t-s). もしweΩを固定し,f(t) = etx(w) を定義すると,この式は, etX(w)_esx(w)=(t-s) X (w)e (w)x(w) (1.9.1) となる.ただし,(ω) はωに依存する実数 (すなわち,tとsの間の値を取る確率変 数)である. (i) 優収束定理 (14.9) (191) 式を使って,次を示せ. lim EY = Elim Yn=E [XetX] . (1.9.2) n→∞ [n→∞ このことから,求める式 4'(t) [XetX ] が導かれる. (ii) 確率変数 X は正の値も負の値も取り得、全てのt∈Rに対し Eetx < かつ E [|X|etX] < ∞ であると仮定する。 再度 '(t) = E [XetX] を示せ(ヒント: (1.3.1) 式の記号を使って X = X + - X- とせよ . )

未解決 回答数: 1
化学 大学生・専門学校生・社会人

大学受験で、周期表はどこまで覚えた方が良いでしょうか?流石に全部覚える必要はないですか?

1 ヘリウム 4.003 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H |2Hel 水素 1.008 Lia Bel 2 リチウム ベリリウム 6.941 9.012 典型元素 5B 6C N O F Ne 10] ホウ素 遷移元素 10.81 炭素 12.01 窒素 14.01 酸素 16.00 フッ素 ネオン 19.00 20.18 3 11.Na12Mg ナトリウム マグネシウム 22.99 24.31 13A 14S 15P 16S 17CI 19 Ar アルミニウム ケイ素 26.98 リン 硫黄 塩素 アルゴン 28.09 30.97 32.07 35.45 39.95 4 19K 20Ca 21Sc 22Ti 23V 24 Cr 25Mn 26Fe27Co 26 Ni 29Cu30Zn32Ga32Ge33As 31Se 35 Br 36Kr 39.10 カリウム カルシウム スカンジウム チタン バナジウム クロム 40.08 44.96 47.87 50.94 52.00 マンガン 20 コバルト ニッケル 54.94 55.85 58.93 58.69 63.55 65.38 69.72 鉛 ガリウム ゲルマニウム ヒ素 72.63 74.92 セレン 臭素 78.97 79.90 クリプトン 83.80 5 37Rb 39Sr 39Y 40Zr 42Nb 42 Mo 43TC 44 Ru 45 Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb52Te 531 530Xe 544 87.62 88.91 91.22 92.91 ルビジウム ストロンチウムイットリウムジルコニウム ニオブ モリブデン テクネチウムルテニウム ロジウム パラジウム 85.47 | カドミウム インジウム スズ アンチモン テルル ヨウ素 キセノン 95.95 (99) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 60 55 SCs ss Bal 57~71 72Hf 73Ta 74W 75Re 76Os 77lr 78Pt 70 Au 30Hg 81 TI 02Pb 83 Bi 34 Poss At 86 Rn 80 132 178.5 セシウムバリウム ランタノイド ハフニウム タンタル タングステン レニウム オスミウム イリジウム 白金 17.3. 180.9 183.8 192.2 金 186.2 190.2 195.1 197.0 水銀 タリウム 200.6 鉛 204.4 207.2 ビスマス ポロニウム アスタチン 209.0 ラドン (210) (210) (222) |37 Fring Ral | 89~103 104Rf 105Db 106Sg 107 Bh 108HS 100Mt 110DS 12Rg 112Cn 113Nh 114F 115MC 116 Lv 117 TS 1180g | フランシウム ラジウム アクチノイドラザホージウムドブニウム シーボーギウム ボーリウム ハッシウムマイトネリウム ダームスタチウムレントゲニウム コペルニシウム ニホニウム フレロビウム モスコビウムリバモリウム テネシン オガネソン (223) (226) (268) (271) (272) (280) (285) (293) (267) (277) (276) (281) (278) (289) (289) (293) (294) 7

回答募集中 回答数: 0