学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

解説して欲しいです。

当社の備品に関する次の [資料] にもとづいて、以下の各問に答えなさい。なお、会計期間は1年(決算日:3月31日) であり、期中に取得した有形固定資産に関しては年間の減価償却費を月割りにて計算する。 [資料] 1. 備品に関する事項 X5年4月1日 備品甲 (取得原価: ¥160,000)および備品乙(取得原価: ¥180,000)を取得し、 代金は小切手を振出 して支払った。 X5年10月1日 備品丙 (取得原価: ¥120,000) を取得し、 代金は小切手を振出して支払った。 X6年4月1日 備品甲を¥140,000にて売却し、 代金は現金で受け取った。 X7年4月1日 備品乙の除却を行った。 なお、 備品乙の見積処分価額は¥30,000である。 2. 減価償却に関する事項 (記帳方法: 間接法、残存価額:ゼロ) 減価償却方法 耐用年数 備品甲 定額法 備品乙 定額法 備品丙 定額法 5年 8年 4年 問1 X6年3月31日) の減価償却費の総額を解答しなさい。 ×5年度(X5年4月1日~ 問2X6年度(X6年4月1日~ X7年3月31日) の4月1日における備品甲の売却益の金額を解答しなさい。 問3×6年度の減価償却費の総額を解答しなさい。 問4X6年度の備品勘定および備品減価償却累計額勘定を完成させなさい。 なお、 総勘定元帳は、 英米式決算法により締 切ることとし、摘要欄の勘定科目等は次の中から最も適当と思われるものを選び、( )の中に記号で解答するこ と。 また、 本間においては同じ語句を複数回使用してもよい。 [語群 ] ア. 前 期繰 越 イ. 備 オ. 諸 力次 品 繰 越 ウ.減価償却費 キ. 固定資産売却益 エ. 備品減価償却累計額 ク 固定資産除却損 問5×7年度(X7 年4月1日~ X8年3月31日) 4月1日における備品乙の除却損の金額を解答しなさい。 問6 上記問5につき、 備品乙の減価償却を定額法に代えて200%定率法で計算した場合の除却損の金額を解答しなさい。 [200%定率法における償却率表] 耐用年数 8年 償却率 各自算定 改定償却率 0.334 保証率 0.07909 は7月 7 有形固定資産の貸借対照表価額に関する次の文章について、 空欄に適切な用語を記入しなさい。 備品等の有形固定資産の取得原価には、原則として当該資産の引取費用等の ( 減価償却累計額を控除した価額をもって貸借対照表価額とする。 )を含め、その取得原価から

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

A.Bの電流がcにつくる磁場はなぜ図のようになるのか教えてください。 右ねじの法則をどう使えば図のようになるんですか?

例題43 平行電流がおよぼしあう力 図のように, 3本の平行で十分に長い直線状の導線A, B, とBに紙面の表から裏の向きに, Cには逆向きに,いずれも cを, 一辺10cmの正三角形の頂点に, 紙面に垂直に置く。 A 12.0Aの電流を流す。 真空の透磁率を4×10-7 N/A とする。 (1) A,Bの電流が,Cの位置につくる磁場の向きと強さはい くらか。 (2)導線Cの長さ 0.50mの部分が受ける, 力の向きと大きさはいくらか。 指針 (1) ねじの法則を用いて, A, B の電流がCの位置につくる磁場を図示し, それ らのベクトル和を求める。 磁場の強さは. H=I/(2πr) の式を用いて計算する。 (2) フレミングの左手の法則から力の向きを, 磁場 261 発展問題 524 10cm B ので,Ha=H, である。 合成磁場は,図の右 向きとなる。 H, HB は, I 2.0 10 H=HB= = = - [A/m〕 2лr 2×0.10 π 合成磁場の強さHは, F=1JHI の式から力の大きさを求める。H=2×Hacos30°=2x10x1 08 π =5.50A/m 5.5A/m 10/3 = π 解説 F30° 電流の大きさは等しく, Cまでの距離も等しい (1)A,Bの電流がC の位置につくる磁場 A,Bは,右ねじの 法則から、図のように なる。HA,HB は,そ れぞれ AC, BC と垂直である。また,A,Bの -HB CQ H (2) フレミングの左手の法則から, 導線Cが受 ける力の向きは,AB と垂直であり,図の上 HA 向きとなる。 力の大きさFは, AQ &B 10√3 F=μolHl=(4×10-7) x2.0x -×0.50 π =6.92×10-N 6.9×10-N

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0