学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理です. 2番と4番を教えてください。 よろしくお願いします

応用物理II R4:課題1(担当:挽野真一) 間1 図1に示したように、バネ定数kの2つのパネ につながれた質量 m のおもりが床と接している場 合を考える。おもりがつり合いの位置から x だけ ずれたとする。原点0をつり合いの位置とすると 点0からxだけずれたとき、おもりと床との間の 摩擦力を無視するとして以下の問いに答えよ。 imm X 0 図1 バネ定数 kの2つのパネに質量 mのおも りがついている。. (1) おもりの運動方程式を立てよ。 (2) (1)の運動方程式の一般解を求めよ。 (3) 初期条件として、時刻1=0 のとき、x(0) = 0, dx =%を満たす解を求めよ。 問2 図のように、パネ定数kのバネに質量 m のおもりをつけた。バネが つり合いの位置にあるとき、おもりの位置は yo であった。おもりの位 置がyになるまで下に引っ張って、おもりを静かに放した。以下の問い に答えよ。ただし、重力加速度をg、空気抵抗は無視できるものとする。 (1) おもりの運動方程式を立てよ。 (2) (1)で立てた運動方程式の一般解を求めよ。 (3) おもりの速度がゼロとなる時刻を求めよ。 Yo y 問3 直線状に2つの同じ原子が結合している水素 H2 分子の振動現象を考える。ここでは、簡単のた め原子間の結合はバネ定数kのバネで結合されているとし、水素の質量を m として以下の問いに 答えよ。重力の影響は無視してよい。 (1) 図に示すように各原子が変位しているとして、各原子の運動方程式を立てよ。 (2) (1)で立てた運動方程式から分子の角振動数を求めよ。ただし、分子の重心は静止しているとし てよい。ヒント:原子間の相対運動を記述する運動方程 式に変形すると単振動の式と同じになる。 (3) エネルギー等分配則によって、温度 T の熱エネルギ ーkT/2 が振動のエネルギーになっているとして、その時 の振幅を求めよ。 水素 水素 imó X。 図、水素分子の古典モデル。 間4 質量mの質点がx軸方向に保存力Fを受けて運動するとき、質点の運動方程式は mx= F と与えられる。この運動方程式から力学的エネルギーが保存することを示せ。 00 m

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

難しいと思いますが、頭の良い方よろしくお願いします!!

Maxwell 方程式について以下の質問に答えなさい。 1) スカラポテンシャルゅとベクトルポテンシャルAにより E= grad¢ B= curlA と表すことができることを証明しなさい。 2) 任意のスカラ関数xを使って電場と磁場が Xe grad (p dt E B= curl (A+grady) と表すことができることを証明しなさい。 電子の質量はm=9.1×10-31 kg であり、電荷は -e=-1.6×10-19 C である。 では、その大きさはどの位であろうか。以下の手順にしたがって、電子の 大きさを概算せよ。 電子1個が存在する時、その周りの電場E を示せ。 電子の半径をaとする。電子の周りa<rに広がる電場のエネル 3) 4) ギーを求めよ。 電子の質量の原因がここで求めた電子を取り巻く電場のエネルギー であると考える。電子の質量エネルギーは光速をcとして mc2 であ る。この質量エネルギーが電子周りの電場のエネルギーに等しいと して、電子の半径aを、mecEo を用いて表せ。 この半径の2倍を古典電子半径と呼ぶ。古典電子半径を求めよ。 5) 6) 真空中に面積 S=1cm2 の電極板2枚、距離1mmに置きコンデンサ 7) を作った。このコンデンサに電位差 1V を加える。コンデンサ内部 に蓄えられる静電エネルギーを求めよ。 8) 前問のコンデンサの極板に働くカを求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物性物理学の本を読んでいて、質問があります。 本では, 量子力学による1電子原子の電子状態の記述について 添付のように述べていて, (1.12)式までは良いのですが, 赤枠で囲ったところの式(1.13)の導出過程が知りたいです。 よろしくお願いいたします。

$1.2 1電子原子の電子状態 1 p° = 2me 2 a 1 V= 2m。 2m。(r+ r dr 原子においては,原子核を中心としてそのまわりの半径10-10m程度の領 の形となる。ここでAは次のような角度に関する微分演算子である。* 域を電子が運動している。原子の構造を理解するためには,この電子の振舞 1 sin 0 d0 1 を調べなくてはならない。まず最も単純な場合として,Ze の正電荷をもった A= - (sin 0 sin' 0 核のまわりを,1個の電子が運動している場合を考える。Z=1であればこ 1電子原子のハミルトニアンがこのように具体的に与えられた.このハミル れは水素原子そのものであり,Z =2であれば He* イオンということにな トニアンに対するシュレーディンガー方程式(1.9) は2階の微分方程式の形 る。 をしている。これを満たす解として波動関数T(r, 0, φ) が求まれば,1電 原子の質量のほとんどは核に集中しているので、そこを重心として座標の 子原子における電子の分布の様子がわかる。ところで,原子に属する電子の 原点にとってさしつかえなかろう。電子は -e の電荷をもち,核の正電荷 波動関数は,核から十分遠方(r→0)ではゼロに収束するはずである。こ Ze とクーロン相互作用をもつ。そのポテンシャルエネルギーは電子と核の のような境界条件の下で(1.9)式を考えると,電子のエネルギー固有値 E が 間の距離rに反比例し, 離散的な特定の値をとるときのみ解が存在する。これは量子力学系の顕著な Ze? V(r) = - 特徴である。 4TE0ア 最も低いエネルギー固有値を与える解は球対称で、次の形をしている。 である。* これは万有引力と同じ形をもつので,古典的に考えれば,地球が 17Z/2 ( exp(-) 太陽のまわりを回るように電子は核のまわりを楕円軌道を描いて回ると考え 『(r) = たくなる。しかしながら,このような極微の世界まで古典ニュートン力学が ただし,ここで そのまま成立するわけではない,電子の振舞を正しく理解することは,今世 4TEh An = mee? =0.529 A 紀初頭登場した量子力学をもってはじめて可能となった。量子力学によると, 電子の存在確率は波動関数 『(r)の絶対値の2乗に比例する。定常状態では 『(r)は次のシュレーディンガー方程式を満たすというのが量子力学の骨子 はボーア半径とよばれる。 である。 H V (r) = ET (r) ここで はハミルトニアンで,電子の運動エネルギーとポテンシャルエネ ルギーの和であり, 1 p°+ V(r) 2m。 H = の形をもつ。** 第2項のポテンシャル項は方向によらず,核からの距離のみ に依存するので,全体を極座標を用いて表した方が都合がよい。このとき, 第1項の運動エネルギーの部分は Eo = 8.8542 × 10-12 F/m は真空の誘電率。 m。は電子の質量,p= - iAVは運動量オペレータである。ただし,▽はナプラと読 み,直交座標系では 定,立,えを直交する単位ペクトルとして、V= -+ の形をもつ微分演算子である。カ = h= 6.626× 10-4JSはプランク定数。

解決済み 回答数: 1