学年

教科

質問の種類

数学 大学生・専門学校生・社会人

加法定理です! 基本165の問題が分からないことがあります。 αは鋭角であるから、と答えにあるのですが、鋭角と鈍角はどうやって見分けるのでしょうか?また、Sinα=‪√‬1-cos2乗αの式はどの公式をつかっているのでしょうか? お願いしますm(_ _)m

27 加法定理 ① 正弦余弦の加法定理 ① sin (a+β)=sinacosβ+cosasin β ② sin (a-β)=sinacosβ-cos asin β 3 cos (a+8)=cos a cos B-sinasinß ④ cos (a-β)=cosacosβ+sinasin β 正接の加法定理 tana + tan B tan(a+8)=7 1-tanatan B 2直線のなす鋭角 x軸の正の部分から2直線y=mix ...... 図のようにα, βとすると 2直線①、②のなす角0 (0<0<^) [1] 0<α-B <1のとき 0=a-B 13 sin 1x, cos YA a (2) sing= 0 B 13 127, 4 ② tan (α-β)= π, ・①,y=mzx..... tang=m, tanβ=mz = 基本 163 加法定理を用いて, sin 165°, cos 165°tan 165°の値を求めよ。 13 π 3 19 基本 164 1/12=1/7/8/1/1 + 3 5 -π+- 3 12' 4 6 ミル tana-tan 1+tan atan B は次のようになる。 [2] <a-Bのとき 0=-(α-B) YA A 19 tan 12 の値を求めよ。 ITEM a B まで測った角を x であることを用いて, 基本 165αが鋭角, βが鈍角であるとき、次の値を求めよ。 (1) cos a=- sinβ=1のとき sin(a+B), cos(a+B) 1 3' 12 =1/13, cosB=- β= のとき sin(α-β), cos(α-B) 13 (3) tana=5, tanß=-3 M¿‡ tan(a+ß), tan (α-ß)

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0