学年

教科

質問の種類

数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
情報 大学生・専門学校生・社会人

パソコン得意な方、至急お願い致します。 Q3が分からないです。 I17セルに出席番号が偶数で女子に該当したらそのまま国語の点数を反映するよう入力したつもりなのですが、全て0になってしまいます。とこが間違ってますか? ※画像荒くてすみません

遊ゴシック 11 AA 折り返して全体を表示する 標準 EB [貼り付け] BIU- 2 クリップボード フォント セルを結合して中央揃え 配置 +%⁹ 2 数値 117 A A fx =IF(AND((MOD (ROW(B17),2)=0),E17="女"),$F17,0) B C D F G H 0 1 2 3 10 11 12345678911 12 13 条件付きテーブルとしてセルの 書式設定スタイル 下の表の成績表データから、次の Q1 ~Q3の集計を行い、 結果の数値もしくは結果を計算する数式を G8:G10 に記入せよ。 以下のどちらの方法でもよい。 ・表の1列目より右側を使い、 集計用の列を適宜作った上で、最終的な結果を別途求める ・G8からG10セルにSUMPRODUCT 関数を用いた数式を入力し、元のデータから一気に求める。 Q1:A班 の男子の人数は? Q2: 数学か英語で50点未満の点数を取っている人数は? Q3: 出席番号が偶数の女子の国語の平均点 スタイル B H 挿入 削除 書式 セル WE A 2 並べ フィル J K L M N 出席番号 氏名 班 性別 国語 数学 H 英語 3 H Q3 17 4 海老原梢 C 19 6 宮本 茉莉 A 123 10 高原 C 25 12 笹森 歩美 C 27 14 山崎 凛子 A 29 16 深井 心美 B (31) 18 大井 B 33 20 谷口 絢子 B 35 22 竹本 紗季 B 37 24 長谷川 五月 C 39 26 内田 紗綾子 B 43 30 堀井 美奈 C 女女女女女女女女女女女女 63 48 63 64 18 32 55 38 65 10 64 18 30 0 59 77 40 195 44 27 77 46 35 80 41 51 70 85 17 55 71 62 68 62 26 57 32 61 000000001 44 45

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

3)を解いてみたのですが計算方法が合ってるか分かりません。 おそらく与式は2枚目のようになると思います。 2)の解答に自信はないですが以下の通りです。 A1=0,A2=1/2,B1=1/2,B2=1,C1(u)=u, C2(u)=1-u また、2)についてもし間違いがあれば... 続きを読む

S1. n を自然数x,yを実変数として,以下の設問に答えよ. 1) 式 (S1.1) を用いて, 式 (S1.2) の広義積分Iを無限級数で表すことを考える. この無限級数の第n項 αm を求めよ. -* (|| < 1) (S1.1) n=0 1 = = L L 1 1 dady=Σa (S1.2) 10 - xy n=1 2) 式 (S12)のIを(x,y)= (u-vu+g) で変数変換をしたうえで, 式 (S1.3) の ようにL, I2に分解する. ただし, 式 (S1.3) は式 (S14), S1.5), (S1.6) を満 たす.このとき,下式の A1, B1, Ci (u), A2, B2, C2(u), Dにあてはまる定数ま たは関数をそれぞれ答えよ. ただし, A1 A2 とする. I=h+I2 (S1.3) ・Bi ·C₁(u) = - AL B2 g(u, v)dv du (S1.4) 0 C2 (1) = g(u, v)dv du tv) du (S1.5) (S1.6) I2 g(u,v) = 0 D 1-2 +02 3)問2) のの値を求めよ. 必要ならば, 式 (S1.7), (S1.8) を用いてよい。 d = dx 1 (arctanz) (S1.7) 1+α2 1 (|x| < 1) (S1.8) 1-2-0-8(1+3) (1-22) (1 4)問2)の12の値を求めよ. 必要ならば, 式 (S1.7), (S1.8), (S1.9) を用いて よい. 1- cos x tan sin a 2-2 I (sinz≠0) 5) 式 (S1.2) の無限級数の和を求めよ. (S1.9)

回答募集中 回答数: 0