学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理です. 2番と4番を教えてください。 よろしくお願いします

応用物理II R4:課題1(担当:挽野真一) 間1 図1に示したように、バネ定数kの2つのパネ につながれた質量 m のおもりが床と接している場 合を考える。おもりがつり合いの位置から x だけ ずれたとする。原点0をつり合いの位置とすると 点0からxだけずれたとき、おもりと床との間の 摩擦力を無視するとして以下の問いに答えよ。 imm X 0 図1 バネ定数 kの2つのパネに質量 mのおも りがついている。. (1) おもりの運動方程式を立てよ。 (2) (1)の運動方程式の一般解を求めよ。 (3) 初期条件として、時刻1=0 のとき、x(0) = 0, dx =%を満たす解を求めよ。 問2 図のように、パネ定数kのバネに質量 m のおもりをつけた。バネが つり合いの位置にあるとき、おもりの位置は yo であった。おもりの位 置がyになるまで下に引っ張って、おもりを静かに放した。以下の問い に答えよ。ただし、重力加速度をg、空気抵抗は無視できるものとする。 (1) おもりの運動方程式を立てよ。 (2) (1)で立てた運動方程式の一般解を求めよ。 (3) おもりの速度がゼロとなる時刻を求めよ。 Yo y 問3 直線状に2つの同じ原子が結合している水素 H2 分子の振動現象を考える。ここでは、簡単のた め原子間の結合はバネ定数kのバネで結合されているとし、水素の質量を m として以下の問いに 答えよ。重力の影響は無視してよい。 (1) 図に示すように各原子が変位しているとして、各原子の運動方程式を立てよ。 (2) (1)で立てた運動方程式から分子の角振動数を求めよ。ただし、分子の重心は静止しているとし てよい。ヒント:原子間の相対運動を記述する運動方程 式に変形すると単振動の式と同じになる。 (3) エネルギー等分配則によって、温度 T の熱エネルギ ーkT/2 が振動のエネルギーになっているとして、その時 の振幅を求めよ。 水素 水素 imó X。 図、水素分子の古典モデル。 間4 質量mの質点がx軸方向に保存力Fを受けて運動するとき、質点の運動方程式は mx= F と与えられる。この運動方程式から力学的エネルギーが保存することを示せ。 00 m

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題を解いて欲しいです1から

に最も適するものをそれぞれの解答群から一つ選び, 解答用 に適する式を解答用紙の所定の欄 (A] 次の文中の ア ク 紙の所定の欄にその記号をマークせよ。また, 空欄 a に記入せよ。 図のように,質量 m の小球が発射台から打ち出され, 放物運動のあと,ばねで床に取り付けら れた平板に衝突する運動を考える。ただし,小球は図の下向きに重力を受けており, また, 小球の 運動は紙面内に限られる。重力加速度の大きさをgとし,以下では図の右向きにx軸, 上向きにy 軸をとる。小球の大きさや回転は無視でき, 発射台の面との摩擦や空気抵抗は考えなくてよい。 発射台は水平な面 AB と円筒面 BCD からなる。円筒面 BCD は軸Rを中心とした半径,,角度 60° の弧をなし, 位置B で面 AB と滑らかにつながっている。小球は位置 Aから水平に速さ voで 打ち出され、ABCD に沿って運動を行う。小球が位置D に達するためには, voは なければならない。ZBRC=0 である位置 C を通り過ぎるとき,小球の速さは 面から受ける垂直抗力の大きさは ア 以上で イ で,円筒 である。位置 D に達すると小球は速度 び=(U U) で である。打ち出された小球は,最高 ウ 空中に打ち出される。ここで, 速度のx 成分は v,= エ 点Eを通り過ぎ,落下をはじめる。 E 160° 平板 V3r M m A B 発射台 小球と平板が衝突する前,平板はばねとつりあい,その上面が位置 D とちょうど同じ高さにな る位置で静止していた。平板は質量が M で,水平面を保ったまま鉛直方向にのみ運動を行う。ま た,ばねのばね定数はk で,その質量は無視してよい。衝突位置 F は水平距離で位置 D からV3r 離れており,このことから, vo= 衝突直前の小球の速度のy成分は y、= オ カ であ る。衝突後,小球ははね返り, 平板は運動をはじめた。平板の表面が滑らかで,小球との衝突のは ねかえり係数をeとすると,衝突直後の小球の速度のy成分は Uy"= ×(-y')となる。 た だし、U">0 とし, 小球と平板の衝突は一度だけ瞬時に起こるものとする。平板は単振動を行い。 a その振幅は キ 周期は ク である。

回答募集中 回答数: 0