学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物体の落下と粘性抵抗力に関する問題です。最初の図を書く問題からわかりません。わかる方いらっしゃいますか?よろしくお願いします。

問題2 質量の質点の空気中における落下を考える. 質点には重力, および空気による粘性抵抗力 がはたらいている. 粘性抵抗力の大きさは質点の速度に比例し、その比例係数をん > 0 とする. 重力加速度をg とする. 鉛直下向きをy軸とする. 以下の問いに答えよ. 1. 質点とy軸を描き, 質点にはたらく重力と粘性抵抗力を矢印として図に描き入れよ. ま た、それぞれの大きさを図に書き入れよ(「大きさ」 が負の値にならないように注意!). 2. 質点の運動を記述する運動方程式を書け. 3. 時間の経過とともに質点は重力の影響で加速し, それに伴い粘性抵抗力が増大する. 十分 に時間が経つと質点にはたらく重力と粘性抵抗力がつり合い, 質点の速度は一定値に 達する (終速度という). 質点が終速度に達したとき加速度が0であることを踏まえて 運動方程式を解くことなくf を求めよ. 4. 運動方程式を解け. また, 運動方程式の解y(t) を時間微分し, t→∞の極限をとること で終速度 limt→ ý (t) を求め, 前問で導いた答えと一致することを確認せよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

力学の問題です。全然分からないので、画像の選択肢の答えだけでもいいので教えていただきたいです。

5. 上空から落下する雨滴を質量mの質点とみなし, 鉛直下向きを正の方向 (+2方向)として, その運動を考える. この雨滴には,重力 mg が働くと ともに,速度v=žに比例する粘性抵抗力 (av) が働いている.ただし, gは重力加速度の大きさ る雨滴の速度と位置をそれぞれ (0) = 0, 2(0) = 0 とする.このとき,以 下の問いに答えよ. (1) 運動の様子を図示せよ。 雨滴に働く力も記入すること. (2) 運動方程式を立てよ. (3) 時刻t における速度 v(t) を求めよ. (4) 終端速度 vv = lim v(t) を求めよ。 また, 終端速度に達しているとき には,雨滴に働く力はどうなっているといえるか? 解答群 (1) (a) (c) (2) (a) mg - av (d) m (3) (a) v(t) do dt (c) v(t) = いえる. (4) (a) v = える. == a = -mg+av mg a mg (b)uxo = - mg α mg a mg -αU t = 0 におけ は比例定数である.また,時刻 mg av ym g (b) (d) dv (b) -mg + av (c)m = mg - av dt mg O a (1 - e-t) (1-et) (b) v(t): mg (1+ent) (d) v(t) = ² (1 + e²²) α -dv m.g -αu mg これは定数なので雨滴に働く力はつり合っているとい これは定数なので雨滴に働く力はつり合っていると (c) um = ∞. 終端速度は無限に大きくなっていくので,雨滴には重力 のみが働いている. (d) um = -∞. 終端速度は無限に大きくなっていくので,雨滴には重 力のみが働いている.

未解決 回答数: 1
物理 大学生・専門学校生・社会人

流体力学の最初の最初、ラグランジュ微分のところでつまづいて困っております。 二枚目の?をつけた計算過程はどのような微分なのでしょうか? よろしくお願いします。

の1 流れの運動学 8 1 = (u.V)u U のようにして得られた. 記号▽はナブラ (nabla) とよみ 0 鶏分(1.14) 0 マ= e』 + ey Oy 0z のように定義される演算子 (operator) であるす. ea, ey. Ez はそれぞれ』軸, 軸,2軸の正の向きに向かう単位ベクトル (unit vector) で, これらを基本ベク トル (fundamental unit vector)という。 式(1.12) の両辺を At でわって, At →0 の極限をとると,流体粒子の受け る加速度a(z,t) を求めることができ に Au a(x, t) = lim + (u-V) u(z, t) At→0 At Ot D -u(x,t) Dt となる.ただし D +u.V Ot Dt で,D/Dt をラグランジュ微分 (Lagrangian derivative),あるいは実質微 分(substantial derivative), あるいは物質微分 (material derivative) という。 Du/Dt= Ou/0t+ (u.V)uの右辺第1項は, 流体中のある点aをつぎつぎと 通過する流体粒子の速度の時間的変化の割合を表しており,局所加速度 (local acceleration) とよばれている. また第2項は,点cにある流体粒子がある瞬間 にその前後の流体粒子の速度差のために受ける速度の時間的変化割合で対流加 速度 (convective acceleration) とよばれている。 ラグランジュ微分 D/Dtは, オイラーの方法の意味で »とtの関数として表 された量,すなわち 「場の量」に対してのみ作用させることができる. なぜな ら,その定義式(1.16) の右辺は, 独立変数を αとtとするときの偏微分0/0tと ▽によって構成されているからである. aとtの任意関数 f(z,t) のラグラン ジュ微分は,式(1.15) を導いた過程から理解できるように, 流れに伴う f(x.t) の時間的変化の割合,すなわち, 流体粒子の軌跡に沿っての f(z,t) の時間的変 化の割合を表す。 十演算子▽をスカラー関数f(a)に作用させて得られるVfは, f の勾配 (gradient) とよばれ る。▽をスカラー関数に作用させたときは▽の代わりに grad という記号を使ってもよい。す なわち, ▽f=gradf. 後に述べるように, ▽をベクトルとみなしてベクトル関数に作用させ る(内積をとる)ときは, 記号 gradは使わない、ただし、式(1.13) の▽は grad を使って書 くことができる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

全然わからないです…

問2 右図のような2次元平面上で物体が点 A を出発した後、点 B、C の順に移動した。 この時、物体は AB、BC 間をそれぞれ一定の 加度号、妨で移動した。右図の各ます目の間 隔を 1.00 [kmlとして、 以下の問いの答えを解 答用紙に書け。ただし、有効数字は 3 桁とす テ る。単位も必ず書くこと。 (@) 物体が AB 間を移動する間、その速度可は 七=(-2.00.2.50) 【km/h]であった。物体が ~ AB 間を移動するのに要した時間を求めよ。 ⑩) 速さ[世|を[malの単位で与えよ。ただし、Y41 = 6403とする。 (<) 物体が BC 間を移動するのに要した時間は 4.00X10-! 【h]であった。婦を求めよ。 (3) 位置Cから速度(-1.00, -3.00) [km/h]で 3.00 [hl移動したときの物体の位置をD とし、 さらに位置 D から速さ 5.00[km/h]で(⑭ 3)方向に 2.00 [移動したときの物体の位置を E とする。位置D から位置選へのベクトルを図中に示せ。 問3 A、B、Cの位置にそれぞれ-4.0x10*【CI、 2.0x10* [Cl、 -5.0x10? [CIの電荷が分布している 一 とき、C の位置にある電荷に働く力を有効数字2 桁で求め、解答用紙に書け。 単位も必ず書くこと。 ただし、図の1 目門りを1.0 mlとする。また、<ー は90x10? Nm2Czとして計算してよい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全ての問について、解答のプロセスあるいは結果を教えていただきたいです。また、大まかなやり方のみでも大変助かります。 物理が得意で解いてくれるという方、是非ともよろしくお願いいたします!

ト <電上な運動する質点がある、 時刻での加度が(9) = mat (Goo は定誤と表され。 また時誠一 での位置(46) は0であった時誠の関数として位 z() と加聞葉e() を求めなさい 質量mの質点がzy平面上で, 位置= ( 4cowof。 sing ) と家される衝動をしている. こことで4 は長半径と知半径。 は角吉度であり、 それぞれ定数である。 速度 加速度さを求めなさい. また.質 齋にはたらく力を求め、力の方向について説明しなさい. 3. 質点の位置が ー 3 =z⑩ +w(OG 0=0+w(Ox- age と表されるとき, 質点の軌跡は リー 4z2 上 おェ+どである. 初期条件が (z(⑩.⑩) = (0⑩.0: (ez(0),w(0) = Cocosmsnの のこきの係数 4のを求めなさい. また,ッー0 となるァの値と角度6の関数として求めなさい の2の場合考える。() 物体に机の上に四かれ静止。(b) 物体が空気抵抗を受け 上姜休(G78く罰を説明しなさい. また, それぞれのの反作用の力がどのよう の乗に比例した抵抗 (枯作抵抗) 個5る 陳力加送度の大きさを 。。洛 回雪二をとるとき, z 直方向の

回答募集中 回答数: 0