学年

教科

質問の種類

物理 大学生・専門学校生・社会人

全部分かりません!ちんぷんかんぷんです!💦

2/2 物理学入門 演習問題 第6回 1. (a) 減衰振動の運動方程式 d²x dx m +ym dt2 dt -at の解がx(t) = Ae™“ cos (at + 8 ) となるためには、α, y, w。 のどのような関数になら -+kx=0 なければならないか示せ。ただし、ω=√k/m はばねの振動数である。 (b) 初期条件x(0)=x,0(0) = v を満たすような解はどのようになるか示せ。その際は x(t) = Aeat cos (wt+8) = Ae-at (cos wt cosdsin wt sin δ) となることを用いて、 A,8 を消去せよ。 (c) 減衰振動の場合、ばねのエネルギー=mu²+=kx2は「常に」単調減少すること をニュートンの方程式から直接示せ。 2 2. 下図のように2つの粒子が3つのバネにつながっている場合を考える。粒子は1次 元の空間しか動かないものとし、それぞれの粒子の平衡位置 (自然長)からのずれを X1X2 とすると、全体のバネの位置エネルギーは V(x1,x2)===kx²+/=/k'(x_-x2)+=kx2 2 と書ける。ここでk, k'はバネ係数である。 粒子 1,2の質量は等しくmとする。 (b) 重心座標xG (a) 粒子 1,2 それぞれの運動方程式を書き下せ。 x₁ + x₂ 2 (c) 重心座標と相対座標に関する運動の、それぞれの周期を求めよ。 = -と相対座標x=x-x2 に対する運動方程式を書き下せ。 Free free 00000 X2 elllllllll X1 IC

未解決 回答数: 0
物理 大学生・専門学校生・社会人

この問題分かる方いますか?

力学演習 A 課題 (2) mgsinoza *5. 図のように, 角度0の斜面に平行にフックの法則にしたがうバネが設置され、 先端には質量mの物体が取り付けられて いる。 バネは自然長からの伸びまたは縮みに比例した復元力=kを物体に及ぼす。 ここでkはパネ定数と呼ばれる 正の定数である (k = mu² として, kの代わりにωを使って答えても構いません)。 斜面は滑らかであり、摩擦力は無視 できるとする。この問題では、図のように斜面に沿って軸を取り、斜面を登る向きを正とする。 また, 斜面に垂直に 軸を取る。 物体の大きさは無視できるとし、バネの自然長での物体の位置を原点とする。 物体は最初, バネの長さが自然 長になるように支えられ, 原点に静止している。 0 Ex Hawa 14 I 学籍番号 (b) 物体の位置のæ成分をx(t) とし、時間tの関数で表せ。 (d) 物体が行う単振動の周期を求めよ。 (a) 時間 t = 0 で物体からそっと手を離したところ, 物体は斜面を滑り落ち、その後は単振動を行った。 単振動の中心の 位置の成分を求めよ。 伝方程式より、 mx = kx-mgsin = klx-ngsing (c) 物体の運動する速さが最大となる位置の成分とその速さを求めよ。 氏名 ※単振動の中心の位置をX。 とすると、 タ) 分からなかったことや間違えたことは何か? また、説明してほしいことあれば、書きなさい。 to mgsino 2

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

図の力の分解がよくわかりません。

2m モータ A VA ワイヤ 20° ZALOM 5m (0,0)m 1000NP (a) 問題 B (0,2)m x. UCA UCB F₁ R C (5,-1)m (b) 図 2.22 【例題2・3】 | Im F となる.これは,未知数, 関する連立 F = (u2yFx-uF)/d, F2 = (-uyFx+u,F,)/d (2.23) MUSTH と表される.ただし,d=ax^2-y. このとき,F, >0となったなら分 カF は と同じ向き, F <0 となったなら逆向きであることを意味する (F2 についても同様).また,各分力の大きさは,それぞれ, |,|,|F2|となる. なお,との方向が同じ場合, d=0となり分解を行うことはできない. JJANKALINAFANA 【例題2.3】 * * * * 図 2.22(a) のようなクレーンで荷物を一定速度で持ち上げている. モータが 1000N の力でワイヤを巻き取っているとき, 点Cに作用する力が部材 AC お よび BC の長さ方向に与える力はいくらか. 点Cに作用する力を各部材の長 さ方向に分解することで求めよ. ただし,部材には力は長さ方向にのみ作用 し,点Cに取り付けられたプーリの径は十分に小さいもとのする. 【解答】 図 2.22(b)に示すように,点Aに原点を持つ座標系を設定して考え る.点Cにはワイヤに沿ってカF と F2 が作用するが, それらの合力 R は以 下のように計算できる 0 5000+00:62) = (1 216.JP F = (-1000cos20°,-1000sin20°)=(-939.7,-342.0)N F2=(0,-1000)N 08 20 R=F+F2=(-939.7, -1342) N 合力 R を各部材の長さ方向に分解する. 点CからAの方を向く単位ベクトル 2001 1 Acred (2.24)

回答募集中 回答数: 0
1/2