学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

下の問題をできるだけ教えてほしいです。雑ですみません。 ホントに何も分からなくて困ってます。お願いします。

【問 1】 点 (zz) における電場が,E = 』十2j で与えられている. この電場を図示せよ. ただし xy 平面上に限定して描く いう0 【問 2】 電荷の分布が以下のような場合, それによって生じる電場分布の形を, 文章と図を用いて答えよ. (1) 半径 。 の球面上に, 一様な電荷密度で分布する. (2) 無限に広い平面上に, 一様な電荷密度で分布する. (3) 無限に長い 半径 。 の円柱内に, 一様な電荷密度で分布する. 【問 3】 0 <ぁ<o を定数とする. 原点を中心とする半径 。 の球体内の, 半径り<ヶ<o の範囲に電荷が電荷密度 ヵ で一様に 分布している. この電荷によって生じる電場 E を求めたい. (1) 電荷の対称性を用いる範囲で, E の分布はどのようになるか, 文章と図で説明せよ. (2) ガウスの法則 pd4 = = な Eo における面 ⑤ (ガウス面) はどのようなものを選べばよいか. 簡単に理由をつけて答えよ. (3) ガウスの法則における電荷項 0j。はどのようになるか答えよ. (4) ガウスの法則を用いて, 原点からの距離 テ における電場の大きさ 万 を求めよ. 【問4】 た= 間 とおく (< 軸方向の基本単位ベクトル gk と混同しないように). 一様な電場 E」 = 2V2i が存在している空 間の原点に, 電荷 go三1 を固定した. G) 点5, *う における電場 EE を求めよ. (⑫) 点(0. 還 3 における電場の大きさ 万 を求めよ. (3) 束 (0. な) に。 電荷9ニー2 を置くとき。gに作用する力F と, その大きさ が を求めよ. 【問 5】 ガウスの法則を用いて, 電荷分布から電場を求める際に考えなければいけないことは何か. 重要と思われることを3点 答えよ-

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理のが苦手なので教えてほしいです。 よろしくお願い致します

課題 以下の文章・数式の空欄に当てはまる数値や式を答えよ。 数値は SI 単位系の適切な 単位によって表されており、解答に単位を記す必要は無い。 x 軸上を運動する物体がある。 この物体の時刻 t における位置を x(0 とする。 この物体 の、時刻 t におけるx 方向の加速度が -4x(①+16 と表されている。この物体は t=0 にぉ いて原点で静止していた。 2ァ x(①) に関する微分方程式 人 ー | ①) | の解を求めるために、定数 k を用いて、 X(①=x(D+k と置く。X(ぃひ の二階微分が X(O に比例するように k の値を選ぶと、 2 ょ=| ②) | となり、X( の微分方程式は と ー | | となる。 また、 この微分方程式の初 期条件は X(= 0) =| (4) | ぉよび 時 である。 ヌ(t) の解の形を (0 = 4cos(7の)博sin(p) と仮定して微分方程式と初期条件から解を 求めると 4=|(6)トぢ= [loぃ| および ヵー| (8) | となる。 ここから x(① を求めれば、 この物体の運動の範囲は ご <| (10) | でちるに とがわかる。また、速さが最大に なるのは物体が z 三| (11) | にある瞬間である。 時刻 =0 以降に最初にこの点を物体が通 過する時刻は | (12) | である。

解決済み 回答数: 1
1/2