学年

教科

質問の種類

物理 大学生・専門学校生・社会人

5-c, 6-bを教えていただきたいです

5) 図 4.2 に示すように抵抗値 R の抵抗と容量Cのコンデンサが接続された回路がある. 入力を電圧e(t), 出力をコンデンサ両端の電圧vc (t) とする. 問5)においては, t=0 で 回路は静止状態にあるものとする. 静止状態とは,すべての素子に流れる電流,及び 素子両端間の電位差が0である状態をいう. a)この回路の入出力間の伝達関数H(s) = Vc(s)/E (s)を求めよ. ここで, Vc(s), E(s)は, それぞれ, vc(t) とe(t) のラプラス変換である. b)この回路に入力として, 高さ のステップ電圧e (t) = vou(t) を与えた時の出力vc(t) を求め,さらに図示せよ。 ただし, v > 0 とする. c) この回路に入力として, パルス幅Tで高さv のパルス電圧を与えた時の出力v(t)を 求め,さらに図示せよ。このとき, 入力e(t) は,式 (4.2) で定義したパルス波p (t) を 用いて, e(t) = vop (t) と表すことができる. し 単位ステップ関数をuct)として Pit) = u(t) - ult-Ti) e(t) R C vc(t) 図 4.2 RC 回路 6) 図 4.2の回路の入力として, パルス幅T」で高さ v のパルス電圧を周期Tで繰り返し与 える.ただし,T> T1 とする. 十分に遠い過去から入力が与えられ, t≧0では回路が 定常状態に達しているとする.定常状態では, vc(t) = vc(t + T)となっている.この とき,0≤t<Tの1周期の出力を求めたい. a) 図 4.2の回路で, vc (0) 0の場合の, E(s)とVc(s) の間に成り立つ関係式を求めよ.こ こで, Vc(s), E(s) は, それぞれ, vc (t) とe(t) のラプラス変換である. b)上記 a)で求めた関係式を用いて,入力e(t)としてvop(t)を与えた時の出力v(t)を求 めよ.ただし, vc (0) は未知数として残したままで解くこと. e) 上記 b)で求めた式で, vc(0) = vc(T)の関係を用いてvc(0)を求めよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

zに対する変分δI₁の出し方がわかりません、教えてください

2 一般相対性理論 i番目(i=1, 2, ……, N) の質点の座標を z"(ri) あるいは略して z(i), 固有時を T () は dz"(ri)ldriを表わす。 また g() とは gpola(i)) のことである。このI さて(2.43) の 2(i) に対する変分を計算してみよう.ここでながi番目の粒 となる。したがって Isは, 任意の座標変換に対してその値が不変, つまりス またその質量をmi とすると, この物理系の全作用積分Iはつぎのようになる: 27 ここでムは Iム=-2mcv-gm()P()E(Hdru (2.43) は次のようにかくこともできる: I、= -2mc||v-g()を()ぜ(みのー2(i)dzid"a. (2.43)) 1 Iはつぎの量である: =1 Jadu 1 1 I,= - 2cK. -g·Rd*a. (2.44) ミ 2cK, 一般にテンソルにV-gのかかった量をテンソル密度とよび, それをもとの テンソルと区別するために花文字で表わすことにする。特に上にでてきたRの ように,スカラーRにV-gのかかった量をスカラー密度とよぶ。 座標変換 →'に対してスカラーは R(x) = R'(x') であるが,スカラー密度は, V-gという量がついているために R(r) = R(®,.) (2.45) あるいは簡単に al2) という関係をみたす。 (2.45) から (e co)5 (2.45) R(x^)d*a' = R(2)d*x = スカラー カラーである。 子の固有時であることに留意すると

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(2)のグラフをかく問題で、tの範囲が与えられていないのになぜ2Tで終わってしまうのでしょうか。よろしくお願い致します。

電池(起電力 E (V]), コンデ ンサー(電気容量C [F]), コ イル(自己インダクタンスL (H))を右図にようにつなぐ。 まずスイッチS, を入れ充電す ると,コンデンサーには 0 が蓄えられる。 次にS, を開き S。を閉じると が生じる。角周波数 ω3D ] [rad/s] で あるから,周期 T=[0] f=[6] [Hz] である。 点Qを基準とする点Pの電位V[V] は,時間 t [s] (スイッチ S, を入れた時刻をt=0とする) の関数 としてTを用いて表すと、 (V) (1) 電気振動が生じてるとき,コンデンサーに 蓄えられるエネルギー U。 [J] を, E, C, T, t を用いて表す。 282 S。 1 0 CE 2 E- Cキ の電気振動 1 3 LC Q (J]のエネルギー ④ 2元、LC 4編 1 6 2元、LC (s), 固有周波数 2元 6Ecos t T の 1 -CE tos 2 2元 T 4元 81+cos T CE U、= -CE = Uo 9 -CV°= 2 ~ 三 4 oe(-) 1+cos20 (cos'0= を用いて変形せよ) 右図に(1)のグラフ をかけ。ただし、 イ 2 -CE sin 2 -CE'sin' 2 Uc[J). MAAL Co0 1 だけ し,=- CE"とする。 2 Cos8: (tam20 0.5)T Y.50 2T) H{s) 2 ーUト (3) 電気振動が生じて いるときコイルに蓄えられているエネルギーた= U, (J]を6, C, T, tを用いて表すと 24。 f T -U J そ切 Ves U,=0 o) なせててま? tの駅回特にないけ。 Gmad Jo 158

解決済み 回答数: 1