学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(1.5)でどのような計算をしているのかよくわかりません、教えてください🙇‍♂️

6 CE のり の CO で, 真電荷と伝導電流によ て誘起きれた電荷 P4 2 の 5 物質定数を*く んだ場の基と してかきなおすこ とによっ す. 上にのべた なe和のし のとして解釈しなお ノアフトを次に 行ルよ 2・ ed ょず抽介谷< の存在によってで: 物体内に誘起さ れる分極電荷 0z を求めよ 2・ 2章の (の SSOK とく に場が時間的に変わらないときには (x) ニー grad の(%) (1.1) ェょうって生ずる真宅 、この %@②) を静電ポテンシィァルという2・ 点電荷 % に ャの角電坦は第 章 (3.2) にあるように っ ⑪⑭.2) gy) 三 -。。RP R 生還2放502fNSUNeiIE由か2さクトイ である・ KS る. すると 無限避放で 0 になる静電ボテア ンシァルは JA の=ィx。 3 よってあたえられる・ これが正しいことは, 1.3) を(1. 代入してかみれば る. 図1.1 の電気双極子が* 点につくる静電ポテンシィァ わか ルを求めよ 2・ 示デシシァルはスカラー量であるから Pu 6 1 1 = ( 3 。) .$④ 8 QP MO人2が)のョベクョトル を考えて, カーe5 を ーを保ちながから, *つ0 の極限をとる. すると 1 9 / 1 %) 三 ] 5仙 の) 4zeo 2 (で) Os 5G _ 生陽光思 図1.1 ) 4ze ) 微小な電気極子 記 の・grad 1 4zeo gr4do 一・ 2

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理のが苦手なので教えてほしいです。 よろしくお願い致します

課題 以下の文章・数式の空欄に当てはまる数値や式を答えよ。 数値は SI 単位系の適切な 単位によって表されており、解答に単位を記す必要は無い。 x 軸上を運動する物体がある。 この物体の時刻 t における位置を x(0 とする。 この物体 の、時刻 t におけるx 方向の加速度が -4x(①+16 と表されている。この物体は t=0 にぉ いて原点で静止していた。 2ァ x(①) に関する微分方程式 人 ー | ①) | の解を求めるために、定数 k を用いて、 X(①=x(D+k と置く。X(ぃひ の二階微分が X(O に比例するように k の値を選ぶと、 2 ょ=| ②) | となり、X( の微分方程式は と ー | | となる。 また、 この微分方程式の初 期条件は X(= 0) =| (4) | ぉよび 時 である。 ヌ(t) の解の形を (0 = 4cos(7の)博sin(p) と仮定して微分方程式と初期条件から解を 求めると 4=|(6)トぢ= [loぃ| および ヵー| (8) | となる。 ここから x(① を求めれば、 この物体の運動の範囲は ご <| (10) | でちるに とがわかる。また、速さが最大に なるのは物体が z 三| (11) | にある瞬間である。 時刻 =0 以降に最初にこの点を物体が通 過する時刻は | (12) | である。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

教えて下さい。

@ *Wx で全沖 73%箇8:11 【問 1】 熱容量 Cし, C。 が一定の理想気体を, 図のような, 2 つの断熱準静的過程と, 2つ ア の等積過程によって作られるサイクルを考える. 以下の問いに答えよ. ただしッ= デー を比熱比とする. (第2 回レポート 【問1】 も参照すること) (1) 過程Aつ B.BっつっC,CっつっD.DつA, および1サイクルでの, エントロピーの変化 量を, それぞれの状態における温度 アア4.7ぉ,7C,7p を用いて求めよ. (2)て(7) は, ガソリンエンジンを想定した以下の設定で解答せよ. ガソリンの燃焼温度を 7 = 20007C, 外気温を 7 = 27?C , 空気の定積熱容量 Cr = 1.3JK 比熱比々= 1.4, 燃焼室の容積 編 = 150 cm?, 燃焼室 排気量容積 O 1 =1500 cm3 とする. また, 過程 B つ C では, 温度 77 との熱源から, 過程 D つ A では, 温度 7記 からの熱源から熱の出入りがあるものとし, それ以外の熱源は存在しないものとする. (2) 7ぉ。 7の を求めよ. (3) 過程Bつ C での放熱量 gc, D つ A における吸熱量 Qp。 を求めよ. 3 (4) 1 サイクルでの仕事を求めよ. (5) 3300 rpm での出力を求めよ. (3300 rpm=1 分間に 3300 サイクル) グ ) ) (6) 過程BつC におけるエントロピー生成1 Sco, D つ A におけるエントロピー生成 SpA を求めよ. (7) この熱機関の作業物質と, 2つの熱源を合わせた系*? について, 1 サイクルでのエントロピー変化を求めよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この 電気量保存則 が成り立つ場合に、 2つのコンデンサーの電圧が等しくなる理由を教えてください! 出来たら、計算式からではなく理屈を教えて下さると嬉しいです (*´∀`)

Er ユ ( 基本問題 445, 446 気量の保存 電気容量 〇=2.0(uF], C。 三3.0 [uF]の 2 つのコンデン S」 ン Ss 2 ニ2.0 x102〔VJの電池 スイッチS」, S。 を用いて, IN の 6 1のGA S」 を閉じて C,のコンデンサーを充電 ャー c Ne 二N ・ さ+ を切り, 次に S。 を閉じて十分に時間が経過 い ごo C, C。のコ ンデンサーは, はじめ電荷をもちっていな Ce Cs のコンデンサーにたくわえられた電荷はそれぞれ何Cか。 ふ を切ってからS。を閉じる前の : ると, 上側, 下側のそれぞれの極板の電傍は等し C」 の電荷をのとし, 求めるC,, C。 の電荷をQ,, : くなる。 すなわち, 各極板問の電圧は等しい。 @。 とする。 電池を切りはなして S。 を閉じるので, : S』 を閉じたとき, C,のコンデンサ 電気量保存の法則から, 図の破線で囲まれた部分 : 一にたくわえられる電荷をのとすると, の電荷は保存される。すなわち, @=の二@ので : 0@=Cアー(2.0X10-?) x (2.0x10?) ある。 また, の,、の。 の上側, 下側の極板は, それ : 3400 ぞれ導線で接続きれており, 電荷の移動が完了す 8 S。 を閉じたあとの ,, C。 のコンデンサーの電荷 ーーーーーーーーーーーーーーーーーーーーーュ : を, それぞれ6@」, Q。 とする。 電気量保存の法則 : から, の=4.0X10-* …① また, 各コンデンサーの極板問の電圧は等しい。 1 『 ! # 1 ま 1 『 ま 1 1 1 1 1 1 』 ま き 1 1 1 1 3 1! 則+ ま の る | 1 1 1 すま ま 〇 き もニニニニニニニーニーニー 中 6! 1 」 | も +Oo ナオ@の 9 の に 2.0X10-6 3.0x10-* ② 式②から, @。=36,/2 となり, 式①に代入して整 理すると, =1.6X10(C〕, 6。=2.4 x10-*(C)

解決済み 回答数: 1