学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

高校物理のプリントの穴埋めを教えてほしいです! 調べて分かったところはできる限り埋めました! (力のはたらき 高2 物理基礎)

D00000 カー1 ※2カがつり合わない場合 物理基礎プリント No, 13 大きさが異なる 同じ向き 1. カのはたらきと表し方 作用線が異なる ■力の種類 ■力のはたらき 人によるカ以外に、次のようなものが存在する。 運動(速度)を変化させ。(言い換えると→ [ )を生じさせる) (土也王球)の中心が、すべての物体を引く力(質量に比例する。] 重力の大きさを(重さ )ともいう。 の重力 物体の 形を変える。 面の上に置かれた物体に対して、 面から常に( → 物体の運動(速度) が変化したり、 形が変わったときは、必ず、 力がはたらいている。 の垂直抗力 )な方向にはたらく力 [面が物体を押し返すカ) 力の単位:[N)(読み方: ニュートン )を用いる。 面の上に置かれた物体が、滑ろうとするのを妨げる力。次の2つがある。 静止している物体にはたらくもの → ( 静止摩擦力 ) 動いている物体にはたらくもの → ( 3摩擦力 ■力の3要素 力は、力の(同き)、1大きさ)、1作用点 決めないと、そのはたらきが決まらない。→ カの3要素 )の3つの要素を 動摩擦力 へ 静止摩擦力 動摩擦力 引くカ 引く力 力は矢印を使って表す。 矢印の(-さ)は 力の大きさ、矢印の向きは力の向きを表す。 また、作用点を通り、力の向きに引いた )と言う。 IIT 。 矢印の長さ カの大きさ の張力 まっすぐに張った状態の( )などが、物体を引く力 直線(点線]を力の (ゴム)等。のように、力を加えたとき変形する物体が、元に戻ろうと して、相手の物体に及ぼす力 の弾性力 矢印の向き → カの向き 自然長 ※力を加えたとき変形し、力を取り除くと 元に戻る物体を、一般に弾性体と言う。 伸ばしたとき 矢印の始点 → カの作用点 2. つり合う2カ 縮めたとき 弾性力 2つの力が同時にはたらいているにもかかわらず、 物体が ( 吉-) したまま、ある いは、 フリ合っいる)と言う。 ■つり合う2カの例 [いずれも物体は静止している) )している状態のとき、 その物体にはたらく力は( の重力と垂直抗カ の重力と張力 の重力と弾性カ の引く力と静止摩擦力 (作用線が異なるが回転した いので、つり合いと同じと見 なす。) ■2力がつり合う条件 )が同一 の大きさが( い ③向きは (正反大t? へ

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

写真の問題1~3の解法を教えてください。

すること 問題1 xyz 直交座標系の点(x, y, z)において、以下の式で示されるベクトル場 AとBがある。z=0のxy 平 面で、原点を中心とする半径1の円周上の点において、AとBがどのようできるかを図示しなさい。 x A(x, y, z) =(2+ y? y 0 x2 + y? B(x, y, z) = |2+ y?x? +y? 問題2 ベクトル場A とBについて、高さ方向の中心軸がz 軸と重なるように置かれた高さ1、半径aの円 柱表面Sの上で面積分した値をそれぞれ求めなさい。 円柱の下面はz=- 1/2、上面はz= 1/2 に置かれてい るとする。 問題3 原点を中心とするz=0 の平面上の半径aの円周Lを考える。ベクトル場AとBについて、 この円 周をz軸の正方向から見て反時計回りに線積分した値をそれぞれ求めなさい。 問題4 問題 1から3の結果および物理学 III の教科書のガウスの法則およびアンペールの法則の記述を参 考にして、ベクトル場AとBは、電磁気学において、 それぞれどのような物理量によって生ずるのか、さら に、その物理量は xyz 直交座標系のどの位置に存在しているのかについて論じなさい。(ヒント:面積分や線 積分の値が a→0やa→0の極限でどうなるかを考えてみるとよい。) 以上

未解決 回答数: 1