学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理 微分方程式に関する問題です 各問について解答に間違いがないか、又、解答の一部分からないところについてお伺いしたいです (1)解答におかしなところはないか ⑵解答におかしなところはないか/下線を引いた運動方程式の解法について ⑶解答におかしなところはないか/aと中央のた... 続きを読む

【問題1】 野球ボールの運動 野球においてホームランのボールの軌跡を考える。野球ボールの質量をm, ボールをバッ トでコンタクトした瞬間の地面からの高さ, 初速度,地面に対する角度をん,, %, 6,とす る。バッターボックスからフェンスまでの距離L, フェンスの高さをHとしたときに, ホー ムランとなるために初期条件が満たすべき条件を0,-v平面上に示せ。 ヒント:ボールの軌跡を表す微分方程式を求め,6,を与えた時にホームランとな るために必要な。を求める。6,をいくつか変えて, %-G,平面上に図示する。んに よって異なる様子も検討してみるとよい。LやHは具体的な数値を入れてもよい。 【問題2】 ロケットの運動 無重力空間をまっすぐに飛ぶロケットを考える。このロケットの燃料を除く質量はM, 燃料の質量はm(t) とする。このロケットは燃料を単位時間あたり同じ質量だけ使用するも のとし,1=0での燃料の質量をm,,燃料の消費率をμ [kg/s]とする(いずれも時刻さには 無関係な正の定数)。このロケットに搭載されているエンジンは, 燃料の消費により推進力 Fを得ることができる。μが定数であるため, Fも時刻には無関係な正の定数となる。出 発点を基準にしたロケットの位置をx(t) で表す。このロケットが, 時刻t%3D0から燃料を使 用して無重力空間を飛ぶとき,x(t) の微分方程式を誘導せよ。 【問題3】 懸垂線(カテナリー) 距離aだけ離れた 2 つの支点によって支持された長さ距離Lのケーブルの懸垂線につい て考える。ケーブルの断面積をA, 密度をp, 張力をT(x), たわみをy(x) とし, たわみ角を 0(x) とする。このとき, y(x)を求めるための微分方程式を誘導せよ。 また, aと中央の最大 たわみの関係について考察せよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

流体力学の最初の最初、ラグランジュ微分のところでつまづいて困っております。 二枚目の?をつけた計算過程はどのような微分なのでしょうか? よろしくお願いします。

の1 流れの運動学 8 1 = (u.V)u U のようにして得られた. 記号▽はナブラ (nabla) とよみ 0 鶏分(1.14) 0 マ= e』 + ey Oy 0z のように定義される演算子 (operator) であるす. ea, ey. Ez はそれぞれ』軸, 軸,2軸の正の向きに向かう単位ベクトル (unit vector) で, これらを基本ベク トル (fundamental unit vector)という。 式(1.12) の両辺を At でわって, At →0 の極限をとると,流体粒子の受け る加速度a(z,t) を求めることができ に Au a(x, t) = lim + (u-V) u(z, t) At→0 At Ot D -u(x,t) Dt となる.ただし D +u.V Ot Dt で,D/Dt をラグランジュ微分 (Lagrangian derivative),あるいは実質微 分(substantial derivative), あるいは物質微分 (material derivative) という。 Du/Dt= Ou/0t+ (u.V)uの右辺第1項は, 流体中のある点aをつぎつぎと 通過する流体粒子の速度の時間的変化の割合を表しており,局所加速度 (local acceleration) とよばれている. また第2項は,点cにある流体粒子がある瞬間 にその前後の流体粒子の速度差のために受ける速度の時間的変化割合で対流加 速度 (convective acceleration) とよばれている。 ラグランジュ微分 D/Dtは, オイラーの方法の意味で »とtの関数として表 された量,すなわち 「場の量」に対してのみ作用させることができる. なぜな ら,その定義式(1.16) の右辺は, 独立変数を αとtとするときの偏微分0/0tと ▽によって構成されているからである. aとtの任意関数 f(z,t) のラグラン ジュ微分は,式(1.15) を導いた過程から理解できるように, 流れに伴う f(x.t) の時間的変化の割合,すなわち, 流体粒子の軌跡に沿っての f(z,t) の時間的変 化の割合を表す。 十演算子▽をスカラー関数f(a)に作用させて得られるVfは, f の勾配 (gradient) とよばれ る。▽をスカラー関数に作用させたときは▽の代わりに grad という記号を使ってもよい。す なわち, ▽f=gradf. 後に述べるように, ▽をベクトルとみなしてベクトル関数に作用させ る(内積をとる)ときは, 記号 gradは使わない、ただし、式(1.13) の▽は grad を使って書 くことができる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マークついたところの問題の解き方わかる方いらっしゃいましたら教えてください!

凝集状態 間 ng ド-ジョーン剛計 の 10 "mr =108 X 10 mi リョょの反沈ポテンシャルエネル半主計 ルゴン 1分子の結合エネル半語を生 記子 AS の分子の平衡原子間距離を求めよ。 ま 3・2 溢体アルゴンが, 平均 12 個の最通 ) れているとした場合 液体の蒸発熱を算出科示 3・3 純ニッケルにおける空孔形成コンみ は, A = 97.3 kl mol "である. 1100 6 にお6 孔分率を算出せよ. 3・4 純金における空孔形成エンタルピーの人 123.5 kl mol !、 その密度は 19281 kg m! であ訪l における単位体積当たりの平衡識孔数を算出直開 3・5 CaO 結晶内の1ショットキー欠陥の形 キーは, 61 eV である. 1000 *C および2000 CIGG8 に存在するショットキー炎陥の数を人算出せよ。 だ泡 の浴度は 3300 kg m * である、 3'6 1500CでMgO 結晶内に存在する ジョラ 大陥の数を算出せよ。ただし。 欠際形成エン用 2 Ag。三 96.5 kimol! その密度は 3580 kgm* である ニー 300Kで4gC結晶内に存在するフレング の数を算出せよ』 ただしAg結晶は単位乃に Ag'イお を4 個有する 1辺 0.555 nm の立方晶であり. 侵入倍 肝に8伯所存在する四面位置とナッ なお, この 合の欠陥形成エンタルピーは Az =269メ 10 本 である 二 0。をモル%のZr0。 と混合じ議 ー公深になるまで加熱 突定化ジルコニア| 4 0 せり YZn0.で示される ナァを抽人的に決定せょ。 ・導性が筆ら和 3 下記の化人物bにちあょか。 きどのような種拓の欠導opし合物aを加え 4 HBr b. CaBr 人が生成するか入>エ 4 CaBr。 b. TBr 4. MgO, b. Fe,0。 3. MgO, b. Nio 3:10 塩化オトリゥムは 重2165 kg mの立方昌でぁ 1 < 056s in調 の Na と CI を有する. これらのテーッ。 はそれそれ 4人 トル (m9 当たりのNi の上数をne て 立方メー

回答募集中 回答数: 0