学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(8.3)の2つ目の等号ってどのようにして計算しているのでしょうか

S8 境界値開是 へWX) = ーニZ) 113 8.2) を解かなくてはならない. この場合, 真電荷の空間的分布 のz(*%) はあたえられた ゃのとする. もし, 上の方程式が解けたならば, 導体表面 S 上の表面電荷の刻 度分布 o は の 三e婦・72 ーe有(⑤) 8.3 であぁあたえられる. ここで 2 は導体表面に外向きにたてた法線方向の単位ベクト ルであり, み による微分は z 方向への方向微分である. (8.3)は, 容易にわかる ょ5K, Gauss の法則 (4.10) を導体表面上の微小部分に適用したものである. ⑱.1) ぁるいは (8.2) の偏微分方程式を, 問題に適した境界条件のもとに解くこ とは, 特殊の場合をのぞいては一般に困難である. そして個々の問題に対 して, 幣珠な数学的技巧を工夫する必要があり, それらは物理学の問題というよりも応 用数学の問題でもるといってもよいであろう. ここでは, 物理学の他の領域にお いてもよく利用される, なるべく 一般的な方法についてのみ概説するにとどめる・ 等角写像法などの特殊な方法に興味のある読者は, その方面の専門書を参照され たい. 1) 鏡像決 (method of imageS) 人 間内に点電荷と導体とがある場合を考えてみよう. このとき, mn さる

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

教えて下さい。

@ *Wx で全沖 73%箇8:11 【問 1】 熱容量 Cし, C。 が一定の理想気体を, 図のような, 2 つの断熱準静的過程と, 2つ ア の等積過程によって作られるサイクルを考える. 以下の問いに答えよ. ただしッ= デー を比熱比とする. (第2 回レポート 【問1】 も参照すること) (1) 過程Aつ B.BっつっC,CっつっD.DつA, および1サイクルでの, エントロピーの変化 量を, それぞれの状態における温度 アア4.7ぉ,7C,7p を用いて求めよ. (2)て(7) は, ガソリンエンジンを想定した以下の設定で解答せよ. ガソリンの燃焼温度を 7 = 20007C, 外気温を 7 = 27?C , 空気の定積熱容量 Cr = 1.3JK 比熱比々= 1.4, 燃焼室の容積 編 = 150 cm?, 燃焼室 排気量容積 O 1 =1500 cm3 とする. また, 過程 B つ C では, 温度 77 との熱源から, 過程 D つ A では, 温度 7記 からの熱源から熱の出入りがあるものとし, それ以外の熱源は存在しないものとする. (2) 7ぉ。 7の を求めよ. (3) 過程Bつ C での放熱量 gc, D つ A における吸熱量 Qp。 を求めよ. 3 (4) 1 サイクルでの仕事を求めよ. (5) 3300 rpm での出力を求めよ. (3300 rpm=1 分間に 3300 サイクル) グ ) ) (6) 過程BつC におけるエントロピー生成1 Sco, D つ A におけるエントロピー生成 SpA を求めよ. (7) この熱機関の作業物質と, 2つの熱源を合わせた系*? について, 1 サイクルでのエントロピー変化を求めよ.

解決済み 回答数: 1