学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この3問がわかりません💦 物理学です!

[2] 右の図のような座標系で質量 m の物体の落下を考える.ただし重力加速度の大きさ x をgとする。 (1)抵抗力の効果が無視できるとしたとき,この座標系における物体の運動方程式を示せ。 ただし速度を vとする。(3 点) h 解答 運動方程式を立てることは dp = F dt の物体にはたらいている力を具体的に与えることを意味します。 mg (2)この物体を時刻t= 0 でx=h から落下させる際に,非常に高速な初速 voでうちお ろしたとする。このとき,物体の運動方程式を示せ.(3 点) 0 解答 初期条件により積分定数が与えられることに注意して運動方程式を解く。 (3)(2)の状況で抵抗力を無視できない場合を考えよう、このとき抵抗力はf= mkv? と速さの 2 乗に比例する力と して表すことができるとする.ただし,k は正定数とする。今の場合,物体の運動方程式を示し,それを解くことで速 度を求めよ、(3 点) 解答 *授業内で行った速度に比例する抵抗力と考え方は同じ、 *ただし,積分の計算には工夫が必要(有理関数の積分) Remark (A+ B)a+ (B- A)b a? - b2 1 11 A B a? - b2 (a+ b)(a - b) a+b a-b なので,この式を満足する A,Bの組は A+B= ,B-A= 0. 以上より a 1 1 1 11 a? - b2 2a a+b a-

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全く手が付かないです。教えていただけると幸いです。

1. (1) プランク定数丸,真空中の光速c,ニュートン定数Gだけを組み合わせて,エネルギー,質量。 長さ,時間の次元を持つ定数を構成せよ.なおこれらはそれぞれ,「プランクエネルギー」, 「プランク質量」,「プランク長さ」,「ブランク時間」と呼ばれ,宇宙誕生の際や量子重力理 論を考える上で重要な役割を果たすパラメータであると信じられている。 (2) 上で求めた4つの定数の値を SI標準単位で求めよ、有効数字2ヶタで答えること。 注:解答自体はネット検索等で簡単に見つけられると思いますので,考え方や計算過程をきち んと示すこと、答のみ書いたレポートは評価しません。] 2.2017年2月に, NASA が地球から約39光年離れた恒星系「トラピスト1」に地球に似た新しい7 個の系外惑星を発見したと発表し,大きな話題になった。地球からトラビスト1への簡単な宇宙 旅行のモデルを考えてみよう。 宇宙船が地球からトラピスト1まで光速の 80 %の速さで等速度運動すると仮定し!,以下の問 に解答せよ、ただし,話を単純化するため,地球とトラビスト1は相対速度ゼロの二つの慣性系 であるとする。 (1) 地球上の観測者から見ると,地球とトラピスト1は静止しており,運動しているのは宇宙船 である。この観点から,宇宙船がトラビスト1に到達するまでに要する地球上での時間と 宇宙船内での時間 (単位は yr (年))を求めよ。解答は有効数字2ケタとする。 (2) 宇宙船内の観測者から見ると,宇宙船は静止しており,運動しているのは地球とトラピスト 1である。この観点では,(1) で求めた宇宙船内での時間はどのように説明できるか? 【(2) のヒント] 宇宙船内の観測者が測る地球とトラピスト1の距離はどうなるだろうか? 3.重力は他の3つの力に比べて極端に弱いにも関わらず,天体の運行などの宇宙規模の現象に対して は支配的な役割を果たす。その理由を考察し簡潔に述べよ。 4. 湯川秀樹の中間子論によると,相互作用の到達距離はその相互作用を媒介する素粒子の換算コンプ トン波長程度と見積もられる。この考え方を弱い力に適用してみた場合,弱い力の到達距離は どの程度と見積もられるか考察せよ。ただし、弱い力を媒介するボース粒子(ウィークボソン Wキ,z°) の質量は,W*が約 82GeV, z° が約93GEVであることが実験によって判明している 弱い力の到達距離は授業中に紹介しているので,きちんと計算を書くこと、] 2 「つまり,宇宙船の発着に伴う加速·減速や方向転換の加速度などはすべて無視します。 2粒子の換算コンプトン波長の定義は、mをその質量として、入=ー 媒介する光子は質量なので、換算コンプトン波長は無限大となる。ごれは電磁力が長距離力(到達距離 = 無限大)である ことを表している。同じ理由で重力は長距離力であるので、(未発見だが)重力子も零質量であると考えられている。しかし ながら,強い力を媒介するグルーオンも零質量であることがわかっているが、授業で述べたように強い力は短距離力であっ て、原子核の大きさくらいしか力が届かない。これがどうしてかは難しい話なので、きちんと知りたい人は,量子力学を学 んだ後、大学院で QCDを勉強して下さい。 (自然単位系では、A=)例えば,電磁力を

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(2.1.1)をどのように展開すれば(2.1.4)になるんでしょうか

2.1 ラグランジュ形式 解析力学の2つの形式,すなわちラグランジュ形式とハミルトン形式についてその 特徴を述べ,両者の関係を考察するのが本章の目的である). まず,ラグランジュ形式から始める. ラグランジュ形式は独立変数として一般座標 g'を用いて記述されるが, ラグランジュ関数Lはgとずで表される。そして, 外的 拘束条件のない場合は, ラグランジュの運動方程式は前節で述べたように d OL TO = 0,(i=1~ N) dt(0g Og' である。これは gi の時間に関する2回微分方程式であり, 一般には N個の独立な方 住式糸である.したがって, これらの方程式を解いて運動を求めるとき, 初期値 g' と 9の両方を指定して運動が一義的に決定される. すると, 力学系の状態を指定するの は9とであるといえるから, g'とがとを変数とする空間を考えると都合がよい。 このような2N 次元空間を状態空間、あるいはハミルトン形式の位相空間(phase *pace)と対応させて, 速度位相空間(velocity phase space)という。 そこで,速度位相空間の座標を(g',g) で表すことにする.は速度 に対応す る変数であるが, gi は一応q' とは別ものとして扱い, q' の時間微分であるfと区別 注*)本章以下,ラグランジュ関数 Lおよびハミルトン関数H は時間を陽に含まないとする.時間に 顕わに依存する場合も, OL/0tの付加項が付くだけで, 以下の考察は本質的に変わりはない。 15

解決済み 回答数: 1