学年

教科

質問の種類

物理 大学生・専門学校生・社会人

考える力学という本の163ページ(9.27)の式変形がわかりません! この2ページにヒントがあると思うのですが... どなたかお願いします🤲

$9.2 ベクトルの回転 XXK。 ある軸のまわりに角速度 で回転している任意 の トル 4 の単位時間あた りの回転 4/d7 を の を用 いて表す式を求めよう. ペク トルは向きと大きさを与えれ ば決まるから, 回転の様子は。 4 の始点を電上にもって きて, 図9.4のように描くことができる. 時間A7 の間の 4の変化A4 は 図9.4から明らかなようだだ。のと4の 両方に垂直である. 0.3 條性系に対して回転している座標 以上で準備ができたので, 慣性系S に対し 回転しでいる座標系 S'(図9.5) から見た質 点の運動を考えよ う. ざ 系の原点 0' を回転較 上にとり, S系の原点O はどこにとってもょ いから, 0と一致するように選ぶ. 純粋に回 暫のみの場合を考え, S/系はS 系に対して角 速度@ で回転しでいるが, 並進運動はしてぃ 4A41」ゅ。 A414 (9.9) 8 JeO9時4のの > ないも5のとする. の の向きとS系やS*系の座 計 8 に (0 2 林間の向きは必ずしゃ一致している必要はない 9 ER 2 肉原還はとでに理由がない限り自由に選べるから, 図9.5ではぁと。坦 =4sim |6|Az ⑲) である. 4 は4のゅに垂直な成分を表す. したがって。ペベク トル積を用 れば, 向きも含めて 2軸を一致させて描いてある. ただし, 以下では, 座標軸の選び方によらず に成り立つ三股的な議論を行う座標系の相対的な並進運動はなく, かっ (8.4) において ro = 0 だから と表すことcs. 44々ox4A/ @ 2 9.13) ・ を 47 て除して4/ 0 の極限をとる と ある。 この場合には。 $ 8.3 で行ったようなベクトル記号のみによる議論は (OK 押力であるそこで, あらためて,「座標示による質点の運動の記述」 とは何 7 本 上2 @め であるかを考え もae 2 てみると, 系での運動の記六 0 @, 6 @ の運動は見えず(なぜならそれが座標の基準だから) 2 ゆりが<般のまわりに崩導訟ので回転している. < 半 "05 とその大き = 6c 6寺26 ⑲1め っー00のまめょ。 間 に 了9 も @.5) 尺の 員 ・g三ex 、 そ UE 了 の “バム=⑩0.のx,2.0) coo 語I20) K の記述 5 1 0, の運動は見えず (周) 8 DX 衣/二eeキリのる R as/5。 ORG3の(azの Ne 人 oe @.⑰ 質点の加速度・g ニ@y の とする記述 SS 誠林成分 の。 Gi Yoのがあらわに含まれる関係式 遇 人 r6x $9.3 條性系に対して回転している座標

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

空間座標の反転ではどうして(2.16)と(2.17)が成り立つのでしょうか

@y/(の : の / | 2 りー PO 2.15) をうる- 2.14) と (2②.15) とを比較すると, 右手系 と左手系とでは, 右辺 の Lorentz の力の第2 項の符生に違いがある. この結論は他の成分についてもゃ同様 でぁる. したがって, Lorentz の力の作用のもとにおける京電荷の 運動方程式 は。 空間座標反転のもとで共変的でないと考えるかもしれない. しかし, 上の謙 論は (2.13) の仮定にや とづくもので, 電場については 婦(%/。のニー(*, の (2.16) でよいが, 磁場の変換性は (2.13) のかわりに (*/ の ー P(*,の 2.17 であたえられる. (2.16) と (2. 17) の変換性のもとでは, 運動方程式の *" 成分は 2 gy/ gs/ ーーの ー 6。(ダ(の 9+g ッ し(7の, の一 0 ぢし(7(の), j (2.18) となって, これは (2.14) とまったく同形である. (2.17) の型の変換をするベク トルを軸性ベクトル (axial vector) といい, (2.16) のよう な普通の変換をするべ クトルを極性ベクトル (polar vector) という. たとえば, 二つの極性ベクトルの ベクトル積は軸性ペクトルである. 磁場はペクトル場であるが, 普通のベクトル 場ではなくて, 軸性ベクトル場である・ 2②.16) と (2.17) の変換を用いるとすぐに, 左手系で も右手系のそれとまった く同形の Maxwell の方程式 2g(*/ 7 rot' 及(*。 の十 =0 の/(%/,7 sa 5 ro (W。 のーー uo00 diy の(*, のニの(@5 div7 (% の三 がなりたつことを示せる. この証明は読 人 先朋忠相」

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

電磁気学における時間反転についての説明なんですが、1枚目下の「これからわかるように〜」のところからE(x,t)→E'(x,t)になることと、磁場に対してはH(x,t)→H'(x,t)となる理由がよくわかりません どなたか説明お願いします🙇‍♂️🙇‍♂️🙇‍♂️

82 典禁変換と時間反転 4 @?7((の) 22(/9)) ②.23) がえられる. ただし, この場合力 が は時間にはなまによらないものとする。 (2.23) でパラメーター が を ! におきかえると g2ヶ/(/ 2 9 = 如⑦). ②.2?⑰ (2.22) と (2.24) とを比較すると, 粒子の軌道 の が Newton の運動方程式の 解であるならば, その運動の逆転 7⑰ もまた同じ運動方程式の解とたることが わかった. いいかえると, 力がなまに時間によらないときにたは, 粒子の運動は可 逆的である. この性質 は 電磁気学 においても 保証さんているであろうか. それを調べるた め, まず点電荷の速度を考えよう. LuO 9一の) の7(の の 一が) の/ であるから, 映画を逆転させると速度は みの6 、 gみの み 3が @.25) (2.26) と変化し。その符号が変わる. ゆえに, 電流密度は りーンーが(eー7の) ーー バー 7(一の)) ーーなーの) ニーが(%, の) 2 と交換するから。 (2.28) (のーーるの・ SIN Ampere-Maxwell の法則 9の rot 万ニーター DS 等目しょ うら. これからわかるように, 電場は

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

よろしくお願いします

仕事とエネルギー、運動量を用いた物体の運動の解法 【間2] ばねでつながれた二物体の運動の運動量の保存と力学的エネルギーの保存則を用いた運動の解法 (参照:演習問題8の問2) 図のようにまさつのない水平な床の上に自然長が,、ばね定数がkxのばねが置かれている。 その両端に質量 とm。の物体1と2を取り付けた。 物体1に右向きに初速。を与えたところ. の物体は床の上をx軸の正の 方向に運動した。 座標系として、水平方向右向きにx軸、鉛直上向きにy軸をとり、原点を = 0における物体1 の位置にとる。 以下の問いに答えなさい。 (物体1、2の位置、速度、加速度のx成分をそれぞれ、x,(り、xs(り、 Yax(り、pzx(ひ)、qix(り、qzx(ひなど1や2の添え字を使用して表しなさい。 ) (1) この運動において、物体1と物体2の運動量の和は不変である。 その理由を運動量の変化と力積の関係を用いて述べなさい。 (2) この運動において、物体1と物体2の運動エネルギーとばねの弾性エネルギーの和は不変である。 以下の記述がその証明となる。 正しい記述となるように次のカッコ( 1 )から( VI )に入れるべき数や式 を答えなさい。 時刻での物体1と2のx座標x。(。)、x。(ひを用いて、時刻でのはねののびを表すと( 1 )となる。よって、物 体1と2の運動方程式の成分はそれぞれ、m。学e中ニ( Tエ )…①、m se思ニ( 反 )…②となる。 e 次に、①式の両辺と。(O) = 字の各辺との積をとると、次のような等式が得られる。 る map(O演ー( m ) x 左辺はps(O CO (tio人(の )…・@と式変形できる。よっ て(aeO) =(T ) x 名.…④ 同様にして、全(apa⑨)=( mm ) x折品…の ③式と④式の各辺の和をとると、 (tp) ao3() ) =( W )…・⑤ ここで時刻Lでのばねのの びを表す関数をXY(ひとおくと、( IV ) はxi(り、xz(ひの代わりにX(りを用いて、( IV )=( V 和書 くことができる。さらに、のひ式と同様な式変形より、( V )x富= ーikX(O )…⑥となる。 @式と@式より、(imaik(O+3moik(0+3kX2(O ) =( Y )…⑦ 物体1と2は床の上を運動するこ とから、ヵ>(0) = poy() = 0 よって、⑦式のカッコの中は物体1と物体2の運動エネルギーとばねの弾性エネ ルギーの和となっており、それの時刻での微分が( VI )となることから、物体1と物体2の運動エネルギーと ばねの弾性エネルギーの和は不変であるといえる。 (3) ばねの長さがもっとも長くなったとき、物体1と物体2の速度はどのような関係になっているか答えなさい。 (4) ばねの長さの最大値/。。。を求めなさい。 (⑮) 演習問題8の問2の解からも/mxを求め、(4)で求めた値と一致することを確認しなさい。

回答募集中 回答数: 0