学年

教科

質問の種類

物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えて欲しいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

弦の定常波の振動数の測定の範囲です。 予習問題の(2)の問題a b cが分かりません!答えを教えてください!!!!!!よろしくお願いいたします!!!!!!

が得られる。 式と呼んでいる。 刀性 数の測定 振動させると図のような定常波ができた。 弦の 線密度を9.80×10-4 kg/m, 重力カ加速度を9.80 m/s? として問に答えよ。 221 いま。 +x方向に進む波として正弦波関数 y(x, t) = A sin (wt-kx) (16) を仮定すると, y(x, ) dr? 弦を伝わる波の波長入 [m] はいくらか. 弦を伝わる波の速さ [m/s] はいくらか. 音叉の振動数f[Hz] はいくらか. 2- = ーk°y(x, t) = -k?A sin (wt-kx) 実験 (17) 1. 実験装置および器具 弦定常波実験器,発振器, 電子天秤, 周波数 シンセサイザー, 弦(糸), おも り (5g, 5 個),物差し y(x, t) - -w°A sin (wt-kx) or2 = -0°y(x, t) (18) となり、これらを(15) 式にあてはめると 2 k? (19) 2. 実験方法 2.1 糸の線密度の測定 の が得られる。(19) 式を変形すると横波の速さ として (1) 糸を1.2m位切り取り, その長さLを の T 測定する。 (2) 切り取った糸の質量 mを電子天秤で測 定する。 (3) 糸の線密度のを求める. 線密度はσ= 0= k (20) V 0 が得られる。 さらに,一x方向に進む波として次式 y(x, t) = A sin (wt+kx) を考えても全く同じ結果が得られる. なお,(16)式と(21)式に適当な係数を掛け て加えた式もまた,波動方程式の解(一般解) になることをつけ加えておく. (21) m/Lで得られる。 2.2 おもりの質量の測定 5個のおもりに番号をつけ, それぞれのおも りの質量Mを測る。 2.3 定常波の波長の測定 (1) 図7のように, 弦定常波実験器と発振器 予習問題 (1)定常波について簡単に説明せよ。 図のように弦の一端を音又に取り付け, 他 端に滑車を介しておもりを下げる.この音叉を を配置する。 (2) 発振器の外部入力端子と周波数シンセサ イザーの出力端子が接続されている場合に は,その接続を外す。 (3) ビボット滑車をできるだけ振動子から遠 0.75 m 0.012 m ざけて固定する。 (4)糸の一端を弦固定柱に固定し, 次に, 他 端を振動子の穴に通し, おもりを1個つけ, 糸を滑車にかける. (5) 出力調整つまみを反時計方向 (左回り) に回しきる。 (6)周波数調整つまみを矢印に合わせる。 (7) スイッチを入れ, 出力調整つまみを右に 音叉 →x[m] 0.75 0 おもり 質量 1.00 kg (14)式の説明,xが微小変化したときの関数f(x) の変化分の公式として f(x+dx)-f(x) = f (x) dr が知られている。この式のf(x) として (x p 応させると(14)式が得られる。 を対

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題を解説して頂きたいです。 よろしくお願いします。

2021年度2期 演習問題 - 授業14回目 1/1 []に当てはまる数値を求めなさい。その結果を5月29日(土)午前6時59分までに Tora-Net CoursePower「工業力学>14回目>提出 14」に入力して提出しなさい。 提出状況を成績評価に加味します。. *重力加速度の大きさをg=9.8 m/sとします。 【5-4】なめらかな水平床の上に,物体 A(質量 2.8 kg)と物体B(質量 1.8 kg)が置かれています。これらを伸縮しない軽いロープで繋ぎ,物 体Bを一定の力F(大きさ8N)で水平方向に引っ張ります。このと き,両物体に生じる加速度の大きさaは[1] m/s° であり,ロープに作 用する張力の大きさTは[2] N です。 図 5-4 【5-5) 静止していた質量1300 kg の自動車の天井から糸を吊り下げて, その下端に小球を取り付けました。時刻 toから一定の推進力Fで自動 車を加速したところ,Fと逆向きに糸が0= 15°傾きました。小球は自 動車よりも十分に軽いと見なします。このとき,Fの大きさFは[3] kN でした。また,時刻 toから!= [4] 秒後に,自動車の速さが 60 km/h になりました。 図 5-5 【5-6) エレベータかごA(質量580 kg)に荷物B(質量280 kg)を載せて,Aをケ ーブルに吊しています。鉛直方向上向きを正とします。かごAの床から荷物Bに 作用する反力をRとします。 *ケーブルの張カTの大きさが 10.5 kN のとき,エレベータの加速度aは[5] m/s? です。また,R の大きさRは[6] kN です。 *エレベータの加速度aが[7] m/s?のとき,Rの大きさがBの重量の 85 %にな ります。このとき,ケーブルの張力Tの大きさTは[8] kN です。 A B 図 5-6

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

F^μγがマーカーで引いたところのようになるというのがよくわかりません どなたか教えてください🙇‍♂️

て<運動方程式 15.4 電場と磁場の統一: フ ー ゲグジージツアル 前項では3次元空間で定義されたマッ クスウェル応 へ拡張することで電磁場のエネルキ\ー . 運動量テン が ここでは電磁場の4元ポテンシャル(4) カテンソルを4炊元時補 レル/縛 を導入したのだ (@/c 4)T から直接的に を定式化する. これによって, 度力は電場と克場統一した4 次元時で しい形式に整理される. まず (4) の微分?2) によって誘導されるぅ 階の反対称 レウォンシクルレ ルーの4リー 4。 (1.91) を定義する. これを電磁場のテンソル (electromagnetic elq tensor) あるいは ファラデーテンツル (Faraday tensor) という. 電磁場の定義式 (1.38)-(1.39), すなわち玉ニ ー(Vの上の4), ーV x 4 を用いて成分を書き下すと 0 1/c >/c 5/c 六際の)半ー証2 ーpg5/c 3 0 。ぢ: ー85/@ 王の二流 0 (gp)ー (1.92) 逆に言うと, 3 次元ベクトル戸と万はファラデーテンソル 瓦, の六つの成分 を取り出して書いたものだと「定義] することができる. ファラデーテンツソルを反変成分で表現すると, ツーのパージイ =謙交Eg7 0 一品/c 一玉/c fs/c 章GE | no 太5/c 3 0 ームBュ 5/c -9> 0 】 (1.25)-(1.26) を用いて計算すると, に 隔の (1.94) 逆たに言う と。 (1.94) がマックスウェルの方程式の後半2 式 (1.25)-(1.26) に相当 する式だと考えることができる 0) 2.3 館で定義する外微分である

未解決 回答数: 1