学年

教科

質問の種類

物理 大学生・専門学校生・社会人

弦の定常波の振動数の測定の範囲です。 予習問題の(2)の問題a b cが分かりません!答えを教えてください!!!!!!よろしくお願いいたします!!!!!!

が得られる。 式と呼んでいる。 刀性 数の測定 振動させると図のような定常波ができた。 弦の 線密度を9.80×10-4 kg/m, 重力カ加速度を9.80 m/s? として問に答えよ。 221 いま。 +x方向に進む波として正弦波関数 y(x, t) = A sin (wt-kx) (16) を仮定すると, y(x, ) dr? 弦を伝わる波の波長入 [m] はいくらか. 弦を伝わる波の速さ [m/s] はいくらか. 音叉の振動数f[Hz] はいくらか. 2- = ーk°y(x, t) = -k?A sin (wt-kx) 実験 (17) 1. 実験装置および器具 弦定常波実験器,発振器, 電子天秤, 周波数 シンセサイザー, 弦(糸), おも り (5g, 5 個),物差し y(x, t) - -w°A sin (wt-kx) or2 = -0°y(x, t) (18) となり、これらを(15) 式にあてはめると 2 k? (19) 2. 実験方法 2.1 糸の線密度の測定 の が得られる。(19) 式を変形すると横波の速さ として (1) 糸を1.2m位切り取り, その長さLを の T 測定する。 (2) 切り取った糸の質量 mを電子天秤で測 定する。 (3) 糸の線密度のを求める. 線密度はσ= 0= k (20) V 0 が得られる。 さらに,一x方向に進む波として次式 y(x, t) = A sin (wt+kx) を考えても全く同じ結果が得られる. なお,(16)式と(21)式に適当な係数を掛け て加えた式もまた,波動方程式の解(一般解) になることをつけ加えておく. (21) m/Lで得られる。 2.2 おもりの質量の測定 5個のおもりに番号をつけ, それぞれのおも りの質量Mを測る。 2.3 定常波の波長の測定 (1) 図7のように, 弦定常波実験器と発振器 予習問題 (1)定常波について簡単に説明せよ。 図のように弦の一端を音又に取り付け, 他 端に滑車を介しておもりを下げる.この音叉を を配置する。 (2) 発振器の外部入力端子と周波数シンセサ イザーの出力端子が接続されている場合に は,その接続を外す。 (3) ビボット滑車をできるだけ振動子から遠 0.75 m 0.012 m ざけて固定する。 (4)糸の一端を弦固定柱に固定し, 次に, 他 端を振動子の穴に通し, おもりを1個つけ, 糸を滑車にかける. (5) 出力調整つまみを反時計方向 (左回り) に回しきる。 (6)周波数調整つまみを矢印に合わせる。 (7) スイッチを入れ, 出力調整つまみを右に 音叉 →x[m] 0.75 0 おもり 質量 1.00 kg (14)式の説明,xが微小変化したときの関数f(x) の変化分の公式として f(x+dx)-f(x) = f (x) dr が知られている。この式のf(x) として (x p 応させると(14)式が得られる。 を対

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題を解説して頂きたいです。 よろしくお願いします。

2021年度2期 演習問題 - 授業14回目 1/1 []に当てはまる数値を求めなさい。その結果を5月29日(土)午前6時59分までに Tora-Net CoursePower「工業力学>14回目>提出 14」に入力して提出しなさい。 提出状況を成績評価に加味します。. *重力加速度の大きさをg=9.8 m/sとします。 【5-4】なめらかな水平床の上に,物体 A(質量 2.8 kg)と物体B(質量 1.8 kg)が置かれています。これらを伸縮しない軽いロープで繋ぎ,物 体Bを一定の力F(大きさ8N)で水平方向に引っ張ります。このと き,両物体に生じる加速度の大きさaは[1] m/s° であり,ロープに作 用する張力の大きさTは[2] N です。 図 5-4 【5-5) 静止していた質量1300 kg の自動車の天井から糸を吊り下げて, その下端に小球を取り付けました。時刻 toから一定の推進力Fで自動 車を加速したところ,Fと逆向きに糸が0= 15°傾きました。小球は自 動車よりも十分に軽いと見なします。このとき,Fの大きさFは[3] kN でした。また,時刻 toから!= [4] 秒後に,自動車の速さが 60 km/h になりました。 図 5-5 【5-6) エレベータかごA(質量580 kg)に荷物B(質量280 kg)を載せて,Aをケ ーブルに吊しています。鉛直方向上向きを正とします。かごAの床から荷物Bに 作用する反力をRとします。 *ケーブルの張カTの大きさが 10.5 kN のとき,エレベータの加速度aは[5] m/s? です。また,R の大きさRは[6] kN です。 *エレベータの加速度aが[7] m/s?のとき,Rの大きさがBの重量の 85 %にな ります。このとき,ケーブルの張力Tの大きさTは[8] kN です。 A B 図 5-6

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

こちらの1-2を解いていただけないでしょうか

|R1-1:重力下のバネ 四図1 のように, ばね定数たをもつ自然長/ の軽いばねを天井からつり下げ, 質必太 を もつ小球を取り付けた, | 陳力加連度の大きさを り とする (⑪) 天非を原点とする2つの護標系 ヵ, z について, 運動方机式をそれぞれ求めよ ⑫) 静此状態のとき小球の庫標 zo、so を求めよ. ⑬) 運動方穏式を解き, 小球の振動の周期を求めよ R1-2:つりおるし 図2 のように、軽い滑車にかけた凡に荷物をつり下げ, 綱の両端を引っ張る. 消車間の距離を /. それらの中忌 につり下げた荷物の質量を 訪、網と水平のなす角を 9 とする. 重力加速度の大ききを 7とす (1) 静此状態のとき,綱の張力7 を求めよ (2) 集物がないときの綱の位置からの荷物の距離を * とするふと0のの関係式を求めよ ⑬) 荷物が備かに動き, 振動を始めた. 静止状態で綱と水平のなす角を のの.そこからの微小なずれを の(|の| を |陶) 綱と水平のなす角をの=の二の とする. 荷物の運動方租式. 微小振動の周期を求めょ ラ る ーーーーーー んーーーーー R計 の Fig.1 二力ドドのバネ eo 角敵数 in の.cosのの7 = 0の周りの Taylor 大則は ) 1 っい (rjが ! , gin7 m の の の ーの90 1 加 「 2 誠+ ⑪ 1 1 (=DR 。。 coeのml の+ ーーの - 2 3 2 | と {31 (②) 内 とをる2 が二分小さい |の| を 1 のときm 大きくなるにつれで,940T1 の40 はどんどん小きてなる、 このことから、高次め項 (w@ 赤きな項) を大肌に無究して, ainの > 7.com0 < 1と近似する (問題文の記号と合わせればJainの のcowの 1としで解ゆ、 3 | と6 はの に比べ大いため, sin 6,com 負け近似できない.). り吉細を根み角を知りたいまきajnの0-の/lcow0 1ー 3/2| と商次の頂を取り入れるこまで科人の博度を トげるき お4きき チ 守

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

こちらの1-2を解いていただけないでしょうか

|R1-1:重力下のバネ 四図1 のように, ばね定数たをもつ自然長/ の軽いばねを天井からつり下げ, 質必太 を もつ小球を取り付けた, | 陳力加連度の大きさを り とする (⑪) 天非を原点とする2つの護標系 ヵ, z について, 運動方机式をそれぞれ求めよ ⑫) 静此状態のとき小球の庫標 zo、so を求めよ. ⑬) 運動方穏式を解き, 小球の振動の周期を求めよ R1-2:つりおるし 図2 のように、軽い滑車にかけた凡に荷物をつり下げ, 綱の両端を引っ張る. 消車間の距離を /. それらの中忌 につり下げた荷物の質量を 訪、網と水平のなす角を 9 とする. 重力加速度の大ききを 7とす (1) 静此状態のとき,綱の張力7 を求めよ (2) 集物がないときの綱の位置からの荷物の距離を * とするふと0のの関係式を求めよ ⑬) 荷物が備かに動き, 振動を始めた. 静止状態で綱と水平のなす角を のの.そこからの微小なずれを の(|の| を |陶) 綱と水平のなす角をの=の二の とする. 荷物の運動方租式. 微小振動の周期を求めょ ラ る ーーーーーー んーーーーー R計 の Fig.1 二力ドドのバネ eo 角敵数 in の.cosのの7 = 0の周りの Taylor 大則は ) 1 っい (rjが ! , gin7 m の の の ーの90 1 加 「 2 誠+ ⑪ 1 1 (=DR 。。 coeのml の+ ーーの - 2 3 2 | と {31 (②) 内 とをる2 が二分小さい |の| を 1 のときm 大きくなるにつれで,940T1 の40 はどんどん小きてなる、 このことから、高次め項 (w@ 赤きな項) を大肌に無究して, ainの > 7.com0 < 1と近似する (問題文の記号と合わせればJainの のcowの 1としで解ゆ、 3 | と6 はの に比べ大いため, sin 6,com 負け近似できない.). り吉細を根み角を知りたいまきajnの0-の/lcow0 1ー 3/2| と商次の頂を取り入れるこまで科人の博度を トげるき お4きき チ 守

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

これ教えてください!

1. 右の図 (人て(C) のように, 鉛直方向 の管に 動をする。物体の下方にバネ定数たのバ ネが置かれている。バネが自然長の場合 のバネの上端の位置を鉛直方向の座標 > の原点とする。高さんの位置から初速度 ャ=0 で物体を落下させる。物体がバネの ある> はバネと離れることなく運動する。管と 物体の間の摩擦や空気抵抗, およびバネ の質量は無視できるとし, 重力加速度を 9とす 1) (2) (3) 沿って質量 m の物体が上下に運 ミミ 0の所まで落ちてくると, 物体 (⑳) ⑧) (⑥ ⑩0 ミミんと, (⑪り z<0 のそれ ぞれの場合について, 物体の力学的エネルギーの式を書け。また, 力学的エネルギー 保存の法則を用いて, (ii) z=0 での物体の速さg, (iv) バネが一番短くなった時の座標 ヶをそれぞれ求めよ。 物体の位置 >が 0以上と 0未満のそれぞれの場合について, 運動方程式を書け。z<0 の場合に物体の運動は単振動になるが, その振動の中心を求めよ。[Hint : 振動の中心 は, 物体を静かにバネの上に置いてつり合わせた位置。] この物体が高さ >=んと (1) で求めたバネが一番和くなった点の間を往復運動する 場合について, 始めの 1往復 (1 周期) について物体の加速度 c), 速度 の, 位置 3(の0を求め, 横軸を時間,に取ったグラフで表せ。[Hint : バネの質量が無視できる場合 バネが自然長に戻ったところで物体がバネから離れ, 空中に放り上げられる。運動方 程式を書き下し, 解を正確に求めるのが望ましいが, 難しい場合はグラフの概形だけ でも良い。 ]

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解答は順番に4,4,0,3,1,5,7,3,3,6,9,3,3,6,3,2です。 後半の10番からがなぜ解答のようになるのか分かりません…解説お願いします。

以の てはまる, 適当な数値をマークせよ。 了仙に沿って運動する物体A について考える。 時刻 (| における物体 の吉較度りhm/半が。a(0 = ー16z(0 のように生えられているとする。ここで, (0[m は時誠における物体の位置を表している。まず はこの物体 A の運動を考えてみよう。衝分方程式 gz0 1ezの (| に(0 = nest を代入して衣仙する。ここで. 定数。 は正であるとする。ここから。 =[上であれは (0 = inouf は式 (の削の1つであることがわかる。同便に。 gr > 0 であるとして。z(け = cwort を 式 () に代入してみると。 cs = [5]の場合に (0) = cowcrf は式 (大) の解となることがわかる。 さらに 上で出てきた2 つの角を定数公して足したものも。式 () の解になることがわかる。そこで こ の人分往基の一般通として。 (9 =でumaet+ Cacoserf 、 が香らねる, ここに。 で.で。 は任意の定数であり, これらの値は初期条作によって決定きれる。 1 =0さの時 に。 物体Aがテニ3m の位置にいて硬止していたとすると。 Ci となる。この結果か らち。 物体Aは内期が約[6上7] ゆで -[引m <テ< 中 の箇を振動することがわかる。 に。因民がa(0 =ー0e(0 51 で生えられるような物体の連動を考えてみよう- の = - |とすると 0 。_[同r() となるので. 物件Bの時刻(における位攻z(ひ の dd MM sm +cros となることが分かる。ここで, 物体 は1ニ 0のときにァニ6mの位置にいて台度を 0 = 9 m/s で運動して いたとすると。 物価んと物Bが6 =に人9は(=らら> <

回答募集中 回答数: 0