学年

教科

質問の種類

物理 大学生・専門学校生・社会人

どなたかこの材料力学の問題を教えて頂けないでしょうか?専門分野では無いので困っています。

1. 2004年8月9日、関西電力の美浜原発の配管が破裂し、水蒸気が噴出する事故が発生 しました。図1は蒸気が漏れた個所を示しています。 原因は図2に示すように、流量計 測装置を通過した後の水流の乱れにより配管内壁の摩耗が進み、その結果配管の肉厚が 薄くなって破裂に至ったものです。 図2に示されているように、破裂した配管はもとも との内径540mm、肉厚は 10mm でした。内壁が摩耗したことにより肉厚は最も薄いと ころでは 2mm にまで減少していました。 配管には、引張り、曲げ、ねじりなどの外力が作用しています。これだけ肉厚が減少し たことにより、それぞれの外カに対する強度低下はどのくらいであったかを計算して示 しなさい。 1ッ bn Tte Asahi 事故があった美浜原発3号機の構造 タービン建歴 蒸気が充満 原子炉格納容器 蒸気。 加圧器 水 制御棒 主給水 ボンプ 蒸気が漏れた個所 一冷却水 摩耗が進む 燃料 冷却材 ポンプ 口1次系 2次系 流量計測装置(オリフィス) 図1 図2 復水器から 復水管破損の模式図 (国回力S等さどによる)内経別院 さ15 内径に線られる。 下流に乱れが発生 |破操し高温高圧の水が一 |水蒸気となって噴出 一放水路へ冷却水 ビン

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学、有限井戸型ポテンシャルの問題です。 (5)がわかりません。V_*=π^2hbar^2/8ma^2と求めました。

以下の問I、II に答えよ。ただし、プランク定数を 2mで割った定数をんとする。 I.1次元のポテンシャル中の質量mの粒子を量子カ学的に取り扱う。粒子の座標をとし、ポテ ンシャルをV(z)とする。aと %を正の定数として、図1のように| >«の領域でV(z)= % で|<』の領域でV(z) = 0のとき、V%の値を小さくしていったところ、V%<V,のときに東 縛状態が一つだけになった。 (1) 図2のようにV% が無限大のとき、すなわち ||>aの領域でV(z) が無限大で || Saの領 域でV(a) = 0のとき、基底状態のエネルギーおよび第1励起状態のエネルギーを求めよ。 (2) 図1のポテンシャルでV%> V,のとき、基底状態の波動関数および第1励起状態の波動関 数の概形を描け。 (3) 図1のポテンシャルでV%> V。のときを考え、基底状態のエネルギーと第1励起状態のエ ネルギーをそれぞれ Eo, E, とする。このポテンシャルを、図3のように、a<0の領域で はV(z) が無限大となるように変更する。変更後の系の基底状態のエネルギー Eを Eと EEのうちの必要なものを用いて表せ。 (4) V,を求めよ。 (5) 図4のように、|2| < 3a の領域および ||> 5a の領域でV(z) = V./2で3a< ||| < 5aの領 域でV(z) = 0のとき、束縛状態の数を答えよ。厳密に導出する必要はないが、根拠を簡 潔に記すこと。またすべての束縛状態の波動関数の概形をエネルギーが小さい順に描け。 V(2) V(2) V% * E ーa 0 a ーa 0 a 図1 図2 V(2) V(x) Vo Iv./2 0 a ー5a -3a 0 3a 5a 図3 図4

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

これが全く分からないのですが教えていただけないでしょうか

問題:ロケットは、燃料を燃やしてできる燃焼ガスを高速度で噴射しながら加速する。 この加速の仕組み ロケットを本体と燃料からなる質点系として考えてみよう。ロケットは連続的に燃焼ガスを噴出して飛行 るが、ここでは初め At の間にどれだけ物理量が変化するか離散的に考え、後で連続極限 At →0 を取 ことにする。また、ロケットは直線的に運動しているとして1次元的に扱い、 ベクトル表記はしなくても良い 時刻[s]において質量 m(t) [kg] で速度 v(t) [m/s] で飛行しているロケットが、 「単位時間あたり質 b>0[kg/s] の一定の割合」で燃焼ガスを後方に「一定の大きさVの相対速度」で噴射しているとする。 ここでVはロケットと燃焼ガスの相対速度の大きさであり、ロケットの進行方向を正の方向とした時、 焼ガスの速度はv(t) -V で表すことができる。 短い時間 At の間にロケットは質量 bAt の燃焼ガスを後方に噴射しているので、 時刻t+ Atにはロ ケットの質量はm(t+ At) =D m(t) + Amになり(ただし燃焼ガスを噴射するので Am = -bAt < 0)、ロ ケットの速度は v(t+ At) =D v(t) + Avになるとする。 (注:この問題ではロケットは宇宙空間を飛んでいるとし、地表で働く一様な重力は考えなくて良い。) (1)燃料の噴射前後(時刻とt+ At の間)でこの質点系の運動量が保存することを式で表そう。 エンジンの中で 噴射するガスの 反作用で加速 燃料を燃やしてできる 燃焼ガスを噴射 物理学I(精機)第12回 レポート問題 1 問題(つづぎ): (2)(1)で得られた式に対し、 Amと Av は小さい量なので、 その積 AmAv = 0 という近似を用いることで、 m(t)Av + VAm%3D0 の関係が得られることを示せ。 (3) At の時間が経つ間のロケットの質量の変化は Am でのロケットの質量の平均の変化率は ーbAt <0 で与えられることから、 At の時間内 Am =DーDD<0 At と表現される。At →0 の極限を取ることでロケットの質量の変化を表す微分方程式を導け。 そして、 初期条件としてt3D0[s] でm(0) =D mo [kg] を与えることで、 初期条件を満たす特解 m(t) を求めよ。 ただし、この問題で扱う時間の範囲内ではロケットは内部の燃料を全て噴出するほど時間は経ってい ないとする。 (4)(2)で示した式を At で割って At → 0 の極限を取ることで、 速度vの変化を表す微分方程式を求めよ。 (5) ロケットがt=0[s] で静止していた(v(0) %3D 0)として、 (4)で求めた微分方程式の初期条件を満たす 特解 v(t) を求めよ。

回答募集中 回答数: 0