学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の(2)が分かりません。教えてください

【間 11 (第2回レポート 【問4】 の関連問題) 図のように, 一部を切り取った半径 R 円欄の断面図 の円環の左端に, 鉛直上方から質量 m のおもり落とし, 円環に沿って滑らせる。 最下 点をおもりが通過したときの時刻をt%3D0, 速さが v0であったとして, 以下の間に答え よ、ただし, 重力加速度の大きさをg, 円環とおもりの間には摩擦は無いものとする。 また,円環の中心を原点とし, 鉛直下向きを 軸, 水平右向きをy軸にとることにし. また,回転角0は, 軸から反時計回りを正の方向として測ることにする。 (1) この問題設定においては, カ学的エネルギー保存則の成立条件が満たされているこ とを示せ。 (2) おもりが円環面上にあるとき, 位置エネルギーの基準点を円環の最下点として, カ 学的エネルギー保存則の式を立てると mg mg= mu° + mgR(1 - cose) となる(v= Ró). おもりが最上点(03Dπ) にあるときは, mg= m+ 2mgR となるので、v0 の下限は vo 2 v4gR でよいことになるが, 第2回レポート 【問4】 (4) では, vo の下限はこれより大き く5gR であることが示されていたので, V4gRを下限とするのは誤りであることがわかる, そこで, この力学的エネ ルギー保存則による解法が誤りである理由 (どこに誤りがあるのか)を答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1