学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(2)のグラフをかく問題で、tの範囲が与えられていないのになぜ2Tで終わってしまうのでしょうか。よろしくお願い致します。

電池(起電力 E (V]), コンデ ンサー(電気容量C [F]), コ イル(自己インダクタンスL (H))を右図にようにつなぐ。 まずスイッチS, を入れ充電す ると,コンデンサーには 0 が蓄えられる。 次にS, を開き S。を閉じると が生じる。角周波数 ω3D ] [rad/s] で あるから,周期 T=[0] f=[6] [Hz] である。 点Qを基準とする点Pの電位V[V] は,時間 t [s] (スイッチ S, を入れた時刻をt=0とする) の関数 としてTを用いて表すと、 (V) (1) 電気振動が生じてるとき,コンデンサーに 蓄えられるエネルギー U。 [J] を, E, C, T, t を用いて表す。 282 S。 1 0 CE 2 E- Cキ の電気振動 1 3 LC Q (J]のエネルギー ④ 2元、LC 4編 1 6 2元、LC (s), 固有周波数 2元 6Ecos t T の 1 -CE tos 2 2元 T 4元 81+cos T CE U、= -CE = Uo 9 -CV°= 2 ~ 三 4 oe(-) 1+cos20 (cos'0= を用いて変形せよ) 右図に(1)のグラフ をかけ。ただし、 イ 2 -CE sin 2 -CE'sin' 2 Uc[J). MAAL Co0 1 だけ し,=- CE"とする。 2 Cos8: (tam20 0.5)T Y.50 2T) H{s) 2 ーUト (3) 電気振動が生じて いるときコイルに蓄えられているエネルギーた= U, (J]を6, C, T, tを用いて表すと 24。 f T -U J そ切 Ves U,=0 o) なせててま? tの駅回特にないけ。 Gmad Jo 158

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

弦の定常波の振動数の測定の範囲です。 予習問題の(2)の問題a b cが分かりません!答えを教えてください!!!!!!よろしくお願いいたします!!!!!!

が得られる。 式と呼んでいる。 刀性 数の測定 振動させると図のような定常波ができた。 弦の 線密度を9.80×10-4 kg/m, 重力カ加速度を9.80 m/s? として問に答えよ。 221 いま。 +x方向に進む波として正弦波関数 y(x, t) = A sin (wt-kx) (16) を仮定すると, y(x, ) dr? 弦を伝わる波の波長入 [m] はいくらか. 弦を伝わる波の速さ [m/s] はいくらか. 音叉の振動数f[Hz] はいくらか. 2- = ーk°y(x, t) = -k?A sin (wt-kx) 実験 (17) 1. 実験装置および器具 弦定常波実験器,発振器, 電子天秤, 周波数 シンセサイザー, 弦(糸), おも り (5g, 5 個),物差し y(x, t) - -w°A sin (wt-kx) or2 = -0°y(x, t) (18) となり、これらを(15) 式にあてはめると 2 k? (19) 2. 実験方法 2.1 糸の線密度の測定 の が得られる。(19) 式を変形すると横波の速さ として (1) 糸を1.2m位切り取り, その長さLを の T 測定する。 (2) 切り取った糸の質量 mを電子天秤で測 定する。 (3) 糸の線密度のを求める. 線密度はσ= 0= k (20) V 0 が得られる。 さらに,一x方向に進む波として次式 y(x, t) = A sin (wt+kx) を考えても全く同じ結果が得られる. なお,(16)式と(21)式に適当な係数を掛け て加えた式もまた,波動方程式の解(一般解) になることをつけ加えておく. (21) m/Lで得られる。 2.2 おもりの質量の測定 5個のおもりに番号をつけ, それぞれのおも りの質量Mを測る。 2.3 定常波の波長の測定 (1) 図7のように, 弦定常波実験器と発振器 予習問題 (1)定常波について簡単に説明せよ。 図のように弦の一端を音又に取り付け, 他 端に滑車を介しておもりを下げる.この音叉を を配置する。 (2) 発振器の外部入力端子と周波数シンセサ イザーの出力端子が接続されている場合に は,その接続を外す。 (3) ビボット滑車をできるだけ振動子から遠 0.75 m 0.012 m ざけて固定する。 (4)糸の一端を弦固定柱に固定し, 次に, 他 端を振動子の穴に通し, おもりを1個つけ, 糸を滑車にかける. (5) 出力調整つまみを反時計方向 (左回り) に回しきる。 (6)周波数調整つまみを矢印に合わせる。 (7) スイッチを入れ, 出力調整つまみを右に 音叉 →x[m] 0.75 0 おもり 質量 1.00 kg (14)式の説明,xが微小変化したときの関数f(x) の変化分の公式として f(x+dx)-f(x) = f (x) dr が知られている。この式のf(x) として (x p 応させると(14)式が得られる。 を対

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

1枚目7.2.3の2段落から式(7.2.25)までの解説がよくわかりません。どなたか教えてください

ーー ^ま ESジンジーレレYバ。 7.2.3 レイリー-ジーンズの式 は無限自由度の調和振動子の集ま りであると解釈できるから (A6節) (7.2.23) 式をそのまま用いて単純に 友, oo とすれば」 真空の比熱は発散してし まう。とすればぱば, 真空は熱浴から無限にエネルギーを得ることになり. 熱平衡状態 は突現し得ない。 もちろん, これは経験事実相容れない. それを認識した上で, あえてエネルギー等分配則が成り立つ場合に予想される幅射スペクトルを求めてみ よう. 1 辺の立方体内の電磁場を考えて周期的境界条件 (periodic boundary com- ition) を課おとにすると 電磁場の波長の整数合がと一致する必要がある こま6 7 をの各成分で成り 立つので, 波数ベクトルを7/(2)合した5 講和 ミたのを十 は無炊元の幣数ペクトル ぁみ となる. したがって, 波数の大きき上がまで の重囲に 合、 対応する整数ベクトア 開にある波数ベクトルの個数は, ヵル/(2r) の場合 ーーードー 0 ポテンシャルエネル "18 格子点上が安定な基準点だとすれば, をこからの変位を qとしたとすき 2人kea (7 20) 式のように 2 数でET のとのBB " 個の原子からなる固体を考える 上 6 としてよい で08計半しBluc 6 6であるが, もちろ

解決済み 回答数: 1