学年

教科

質問の種類

物理 大学生・専門学校生・社会人

力学の問題です。回答だけでもいいので教えていただきたいです!!

質量mの物体を水平面と0 (ただし, 0 0 < ™/2) の角をなす方向 に速さで投げ上げた. この物体の運動を調べるために, 水平方向で 物体が進む向きを を設定する. このとき, 時刻における物体の位置と速度をそれぞれ ((ty(t)), (x(t), ey(t)) で表すことにして, 時刻t=0における物体の位 置は (x(0),g(0)) = (0, 0) であるとする. また, 空気抵抗は無視できてこ の物体に働く力は重力 mg =-mge のみであるとして, 以下の問いに答 えよ. (1) 運動の様子を図示せよ. 物体に働く力も記入すること. (2) 方向と方向それぞれの運動方程式を立てよ. (3) 速度の成分v(t) とy成分y(t) を求めよ. (4) 位置の成分ェ(t) とり成分y(t) を求めよ. (5) この物体が最高点に到達したときの水平面からの高さを求めよ. 解答群 (1) (a) (c) (b) 0, mg (2) (a) mgsin0, mg cos0 鉛直上向きを+y方向とする座標系 方向とし, dvx dt mg cose mg sin 0 dvy (c)m =mgsino, m=mg cos0 dt (5) (a) (b) .mg (c) (d) X =-mg (b) dvr dvy (d) m- = 0, m- dt dt (3) (a) vェ(t) = vosin0, vy(t)=-gt + vo cos 0 (b) x(t) = vot cos0, y(t)= vm sin (20) g sin A cost 2g sin20 2g vcos²0 2g (d) (b) ux(t) = up cos0, vy(t)=-gt+vo sin 0 0 (c) ux(t) = gtsin0, vy(t) = - gt cos0 + vp sin 0 (d) ux(t) = gt cos0, vy(t) =-gtsin0 + vp cost y (4) (a) x(t) = vot sin0, y(t) = -12gf2 + vot cost y(t) == /2gt² + 0 (c) x(t)=1/2gt-sino, y(t) = -12gt-cos0 + vot sin0 1 (d) x(t) = ½gt² cos0, y(t) = −gt² sin + vot cos + vot sin 0 img sino mg mg cos e x x

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理の運動です。 物理がほんとにわからなくて困っているので、間違っている場所を教えて頂きたいです😭全部間違っている気しかしてきませんが... 回答よろしくお願いします🙇‍♀️🙏

1.y平面上を運動している質点の時間+における位置ベクトルr(t) が以下のように書けるとき, 次 の各間に答えなさい。るとらは直交座標系の単位ペクトルである。(2点) (i)任意の時間tにおける質点の速度ペクトル (t) を求めなさい。 t)は)ぞ (i)任意の時間tにおける質点の加速度ペクトル a(t)を求めなさい。 AP 2. 地表から質量m の小球を鉛直上方に初速度0で投げ上げた。以下の間に答えなさい.ただし,鉛 直上向きをy軸正の向きとし,浮力や空気から受ける抵抗は無視する,(4点) (i)重力加速度をgとして,小球のy軸方向の運動方程式を書きなさい。 Vo faup meーg t? -g 0 地表 (i)任意の時間tにおける小球の速度u(t) を求めなさい。 V せ:S-g)た:一先+C(cは空数) -84 t=0のとき、Ve10): Vo sin O + Vosin o 解 Vt)=-91 +Vasihe ()任意の時間tにおける小球の高さ y(t) を求めなさい。ただし, g(0) =D0 とする。 そしけ)= 8V¢(t)dtStt Vesin日)dt -2ピ+ Vot.siag+c' IC'は数) tonに、そ10)=0より、c'=0 より、 りけ)=-5せみ ytsng (iv) 小球の最大到達高度 Ymax を求めなさい。 ymar - Vl0) V (0) = Vosin 9 (t) =SV#l0)dt S(Voine)dt - stsinot c'rc'"atた数) 解4け)こVotsingtC"(cier)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・基準振動についての問題です。 (4)以降が分かりません。 (4)のように異なる固有角振動数の問題ではどのようにして基準振動を考えればよいのでしょうか? (5)以降は同期現象だと思うのですが、どのように解けばよいのでしょうか?ちなみに(5)はΔω=2Ksin(Δφ*)と... 続きを読む

以下の問I、IIに答えよ。 また、結果だけでなく、導出過程も簡単に記すこと。 I長さの異なる紐をもつ二つの振り子の問題を考える。図1の ように』軸の正の方向を鉛直下向きとし、振り子の支点は2軸 上にあるとする。それぞれの振り子につけられている質量m のおもりは鉛直下向きに重力を受け、2軸に垂直な面内を運動 する。紐の長さはそれぞれい,であり、4>&とする。おも りの大きさや紐の質量は無視でき、運動の際に組はたるまな いとする。重力加速度をgとして、以下の問いに答えよ。 まず、支点でのまさつの効果を無視し、二つの振り子が独立に運動する場合を考える。紐の長 さがん,&の振り子の振れ角を、図1のように支点を通る鉛直下向きの軸となす角度として、そ れぞれ1,2とする。 図1 (1) 紐の長さが1の振り子のz軸まわりの角運動量 L。を求めよ。 (2) z軸まわりの角運動量 L,の時間微分の満たす方程式を示せ。 (3) が十分小さい微小振動のときの固有角振動数 w」を求めよ。 次に、二つの振り子の角度間に線形の相互作用がある系を考えよう。すなわち、Jを定数とし て、角度6,2 の運動方程式が d? =-w +J(B2 - h), d2 2= -5 + J(G,- Ba), と表せるとする。ここでwとwaは相互作用がないときの振り子の固有角振動数である。 (4) (t = 0) > 0, 0z(t = 0) = 0から静かに運動を始めるとき、その後の運動を基準振動の考 え方を用いて定性的に説明せよ。 dA dp 0, dt 振り子の角度0を振幅 Aと位相ゅを用いて0= Acos ¢ と表すと、単振動は、 と表される。ニつの振り子間に非線形相互作用があるとき、二つの振り子の位相1と2の時 間発展は上記のwiとw2を用いて次のように表せるとする: =W dt d の1=wi+ K sin(¢2- ), d 2= w2+ K sin(¢- p2). dt dt ここでKは定数とする。二つの位相の差 △¢ = 2- のが時間依存せずに一定の値をとること を「位相が同期する」という。 (5)位相が同期するときの位相差△がと固有角振動数の差 Aw = w2-wiの関係を求めよ。 (6) 位相が同期するときの振り子の角振動数”を求めよ。 (7) 位相差 AゅがAがから微小にずれても、十分時間が経った極限で位相が同期する条件を導 き、その条件をKとAwを軸とする平面上の領域として図示せよ。

解決済み 回答数: 1
2/2