学年

教科

質問の種類

物理 大学生・専門学校生・社会人

図の力の分解がよくわかりません。

2m モータ A VA ワイヤ 20° ZALOM 5m (0,0)m 1000NP (a) 問題 B (0,2)m x. UCA UCB F₁ R C (5,-1)m (b) 図 2.22 【例題2・3】 | Im F となる.これは,未知数, 関する連立 F = (u2yFx-uF)/d, F2 = (-uyFx+u,F,)/d (2.23) MUSTH と表される.ただし,d=ax^2-y. このとき,F, >0となったなら分 カF は と同じ向き, F <0 となったなら逆向きであることを意味する (F2 についても同様).また,各分力の大きさは,それぞれ, |,|,|F2|となる. なお,との方向が同じ場合, d=0となり分解を行うことはできない. JJANKALINAFANA 【例題2.3】 * * * * 図 2.22(a) のようなクレーンで荷物を一定速度で持ち上げている. モータが 1000N の力でワイヤを巻き取っているとき, 点Cに作用する力が部材 AC お よび BC の長さ方向に与える力はいくらか. 点Cに作用する力を各部材の長 さ方向に分解することで求めよ. ただし,部材には力は長さ方向にのみ作用 し,点Cに取り付けられたプーリの径は十分に小さいもとのする. 【解答】 図 2.22(b)に示すように,点Aに原点を持つ座標系を設定して考え る.点Cにはワイヤに沿ってカF と F2 が作用するが, それらの合力 R は以 下のように計算できる 0 5000+00:62) = (1 216.JP F = (-1000cos20°,-1000sin20°)=(-939.7,-342.0)N F2=(0,-1000)N 08 20 R=F+F2=(-939.7, -1342) N 合力 R を各部材の長さ方向に分解する. 点CからAの方を向く単位ベクトル 2001 1 Acred (2.24)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

力学の問題です。回答だけでもいいので教えていただきたいです!!

質量mの物体を水平面と0 (ただし, 0 0 < ™/2) の角をなす方向 に速さで投げ上げた. この物体の運動を調べるために, 水平方向で 物体が進む向きを を設定する. このとき, 時刻における物体の位置と速度をそれぞれ ((ty(t)), (x(t), ey(t)) で表すことにして, 時刻t=0における物体の位 置は (x(0),g(0)) = (0, 0) であるとする. また, 空気抵抗は無視できてこ の物体に働く力は重力 mg =-mge のみであるとして, 以下の問いに答 えよ. (1) 運動の様子を図示せよ. 物体に働く力も記入すること. (2) 方向と方向それぞれの運動方程式を立てよ. (3) 速度の成分v(t) とy成分y(t) を求めよ. (4) 位置の成分ェ(t) とり成分y(t) を求めよ. (5) この物体が最高点に到達したときの水平面からの高さを求めよ. 解答群 (1) (a) (c) (b) 0, mg (2) (a) mgsin0, mg cos0 鉛直上向きを+y方向とする座標系 方向とし, dvx dt mg cose mg sin 0 dvy (c)m =mgsino, m=mg cos0 dt (5) (a) (b) .mg (c) (d) X =-mg (b) dvr dvy (d) m- = 0, m- dt dt (3) (a) vェ(t) = vosin0, vy(t)=-gt + vo cos 0 (b) x(t) = vot cos0, y(t)= vm sin (20) g sin A cost 2g sin20 2g vcos²0 2g (d) (b) ux(t) = up cos0, vy(t)=-gt+vo sin 0 0 (c) ux(t) = gtsin0, vy(t) = - gt cos0 + vp sin 0 (d) ux(t) = gt cos0, vy(t) =-gtsin0 + vp cost y (4) (a) x(t) = vot sin0, y(t) = -12gf2 + vot cost y(t) == /2gt² + 0 (c) x(t)=1/2gt-sino, y(t) = -12gt-cos0 + vot sin0 1 (d) x(t) = ½gt² cos0, y(t) = −gt² sin + vot cos + vot sin 0 img sino mg mg cos e x x

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

高校物理力学の問題です。 問5以降の問題で、物体1と物体2がどのような運動をするのかを含めて解説して頂きたいです。

物 理 I 図のように,点0を中心とする半径Rの円周の4分の1を断面にもつ中空円筒 と水平面を点Bで滑らかに接続した。水平面からの高さがんとなる円筒面上の点 Aから,大きさの無視できる質量 mの物体1を静かに放す。 水平面上の点Cには 大きさの無視できる質量 mの物体2を置き, これに質量の無視できるばね定数ん のばねを取り付けた。点0, 点A,点Bおよび点Cは同一の鉛直面内にあり, 物 体はすべてこの鉛直面内で運動するものとする。 また, ばねはこの鉛直面内で水平 方向にのみ伸縮するものとする。物体1と円筒面および水平面との摩擦は無視して よい。重力加速度の大きさをgとする。解答は全て解答用紙の所定の欄に記入せ よ。 0 物体1 R A h 物体2 OO ばね C B はじめ,物体2は点Cで水平面に固定されているものとする。点Aからすべり 始めた物体1は, 点Bを通過した後,ばねの右端に到達し,ばねを押し縮めた。 その後,物体1はばねの復元力により押し戻され, ばねが自然長となったときにば ねから離れた。このとき以下の問いに答えよ。 解答には, g, h, k, mおよびRの うち必要なものを用いよ。 ◇M4(436-33)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

初歩的すぎて説明しづらいかもしれませんが、なぜピンクの下線の部分のようになるのか教えて頂けますか??( .. )

較体のつりあぁあい (基本問題 127, 128 図のように、なめ らかな歴と摩擦のある床に, 一様な太さの棒を 立てかける。棒と床がなす角をのとするとき,棒が倒れないための 1 9の条件を, tan9 を用いた式で表せ。ただし, 権にはたらく重力の 1 大きさを,棒の長さを / とする。また. 権と床との間の静下摩拓 バ 係数を / とする。 人 W 棒が受ける力を図示し, 水平方向, 鉛直方向のそれぞれで力のつりあいの式を立てる。 また, 複数の力を受ける棒の下端のまわりで, カ のモーメントのつりあいの式を立てる。 棒は, 重 カ以外に, 接触する他 の物体から力を受け, 図のように示される。 地球から…重力 叱 選から…垂直抗力 が 床から…垂直抗力 Az 床から…静止摩擦力 万 水平方向の力のつりあいから, アーが=0 。 …① 鉛直方向の力のつりあいから, 一玉=0 …② また, 点のまわりのカカのモーメントの和が0と なればよい。点人から, 素までのうでの長さ は, それぞれ7sinの, 7cosの/2 なので, Coで =0 …③ また, 点Aで棒がすべらなければよい。ど万が最大 摩擦力 /V。 以下となり, ミミんW。 …④ 式めから, =2Wton ままの和の和ひヽ人 これを式②に代入して整理すると. z三2」tanの9 …⑤ 式のから, アニ=M」となる。 これと式⑤を④へ代 入して整理すると, MX7sinの一玉 WszX2がtanの 。 tan9ェ上 2

未解決 回答数: 1