学年

教科

質問の種類

物理 大学生・専門学校生・社会人

シュレーディンガー方程式の範囲です。 式を求める所までは分かったのですが、エネルギーの求め方が分かりません。 n=5です。 解き方教えてください。

こで、彼にはk= (c) /hとなり、波数とエネルギーの関係が決まる。 一方、=0での波動関数に対 する境界条件から、 C1=0が決まり、 また、æ=bでの波動関数に対する境界条件から、nを正の整数 (n=1,2,3,...) としてkb (d) が与えられる。よって、エネルギーEの解は各nに対応したとびとび の値 En をとり、その値は20 = になる。 22 En = 2m62 n² (5) 今、この解を使って、 近似的に1,3,5,7,9デカペンタエンにおける電子の状態を求めてみよう。 この 近似のもとでは、エネルギーの低い準位から順に、量子数n=(e)の軌道まで電子がつまっている。 こ の分子が光を吸収して、量子数n=(e) の軌道の電子が励起し、 量子数がひとつ大きい軌道 (節は (f) 個) に遷移するときに必要となるエネルギーは、以下の式で与えられる。 5 22 = 2m62 Ent1 - En (9)+1) n = 5 2n (6) これより、吸収する光のエネルギーを計算しeVの単位で示すと、(h) eVである。ただし、んん/(2m)、 b=12.0Å、プランク定数ん=6.63 × 10-34 Js、電子の質量m=9.11 × 10-31 kg、1 eV= 1.60 × 10-19 書くこと。 Jとする。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題がわかりません! 教えてください!

【問題1】 自動車を加速させる力は次のどれか。 ①~③の該当するものを一つ選べ。 ①エンジンの回転力 ② タイヤが路面を後ろに押す力 ③路面からの摩擦力 【問題2】 バネ定数 350N/m のバネの一端に, 質量が 10.0kgの小球を取り付けて傾斜角 30.0℃のな めらかな斜面上に置き、図のようにバネの他端を固定する。 このときの静止している小球には たらく力を考える。 重力加速度の大きさを 9.80m/s2, 有効数字 を3桁とする。 ※ 単位[N] (ニュートン): 力の単位で, [kg・m/s2] と表せる 20 (1) バネの伸びの大きさ x[cm] を求めよ。 (2) 小球にはたらく垂直抗力の大きさ N[N] を求めよ。 130.0° 【問題3】 質量m=5.00kg, 半径R=20.0cm, 長さ 180.0cmの円柱が, なめらかな2つの面 A, B に はさまれて静止している。面Aは水平面となす角度が0A = 90.0°, 面BはOp=30.0℃である。重 力加速度の大きさを g=9.80m/s2として,次の問に答えよ。 (1) 円柱が面 A から受ける垂直抗力の大きさ NA[N]を 求めよ。 面A 円柱 m 面B R (2) 円柱が面 Bから受ける垂直抗力の大きさ NB[N] を 求めよ。 OA OB 【問題4】 容器に水を入れ, その中に質量の無視できる伸び縮みのしないひもを付けて天井から吊り 下げた金属球を入れた。 水の密度をp=1.00g/cm3, 金属球の半径をr=10.0cm, 質量を m=5.00kg, 重力加速度の大きさを 99.80m/s2として,次の問に答えよ。 (円周率の値の有効数字を考えること。) (1) 金属球が押しのけた水にはたらく重力の大きさ W[N] を求めよ。 (2) 金属球が受ける浮力の大きさ F[N] を求めよ。 (3) ひもの張力の大きさ 7[N] を求めよ。 m 金属球 P 水

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

どうやるのかよく分かりません

18:39:08 * 19% ⑥ プレビュー moodle.s.kyushu-u.ac.jp/log C = 考えよう。 自動車A,Bの運動方程式をかけ。 HS ii) 今度は解いてみよう。 各々の速度を運動方程式を時間で1回 積分することで求めよう。 iii) では相対速度は? (4)テストで10点の人が2人、 15点の人が5人、 20点の人が3人のと き、平均値は、点数と人数をかけたものを総人数で割り算する(あた りまえ)。 重心は 「密度」 の平均位置と考えることができるので、 例 えば長さαで重さがMの棒状の物質を原点からx軸に沿って配置し、æ における密度をp(r) とすれば、 先述の点数に該当するのがェで人数に 該当するのがp(z)、 総人数がMとなるので、 平均位置・・・つまり重 心は11S æp(x)dx で計算することができる。このことを念頭に90度 に折れ曲がった以下のような重さMで均一な密度の棒の重心を何の公 式も用いず、 積分によって求めよ。 4/14追記 持ってきた問題がよく なかったです。これだと2重積分ではなく、x軸に沿った棒とy軸に沿 った棒の二つに分け、 各々の重心を各々平均位置で求める方法が適切 ですね。 というわけで、 二重積分ではない方法で解いてください。 y M 2 IIII 4 T 78

解決済み 回答数: 1