学年

教科

質問の種類

物理 大学生・専門学校生・社会人

どうやるのかよく分かりません

18:39:08 * 19% ⑥ プレビュー moodle.s.kyushu-u.ac.jp/log C = 考えよう。 自動車A,Bの運動方程式をかけ。 HS ii) 今度は解いてみよう。 各々の速度を運動方程式を時間で1回 積分することで求めよう。 iii) では相対速度は? (4)テストで10点の人が2人、 15点の人が5人、 20点の人が3人のと き、平均値は、点数と人数をかけたものを総人数で割り算する(あた りまえ)。 重心は 「密度」 の平均位置と考えることができるので、 例 えば長さαで重さがMの棒状の物質を原点からx軸に沿って配置し、æ における密度をp(r) とすれば、 先述の点数に該当するのがェで人数に 該当するのがp(z)、 総人数がMとなるので、 平均位置・・・つまり重 心は11S æp(x)dx で計算することができる。このことを念頭に90度 に折れ曲がった以下のような重さMで均一な密度の棒の重心を何の公 式も用いず、 積分によって求めよ。 4/14追記 持ってきた問題がよく なかったです。これだと2重積分ではなく、x軸に沿った棒とy軸に沿 った棒の二つに分け、 各々の重心を各々平均位置で求める方法が適切 ですね。 というわけで、 二重積分ではない方法で解いてください。 y M 2 IIII 4 T 78

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

量子力学の問題です。 わかる方おられませんか

2. 外部磁場中の荷電粒子の量子力学、 Landau 準位 ベクトルポテンシャル A(t,x)、 スカラーポテ ンシャル (t,x) がある3次元空間の中を質量m、 電荷eをもつ荷電粒子の運動を考える。 その運動量 をp、 位置座標をェとすると、 荷電粒子を記述するハミルトニアンは以下で与えられる。 1 H(t, z,p) = -(p- eA(t, x))² + eo(t, x) 2m (1) (1) この荷電粒子を表す波動関数を重(t,x) としたとき、 確率密度と確率の流れの密度は、ベクトルポ テンシャルがない (演習問題No.1の) 場合に対し微分∇を 「共変微分」Dに置き換えることで 得られることが知られている。 p:=²=v*v, J:= {*D-(D)*} ここで、 2m D:= V-ie A, +∇ ・J=0が成立することを示せ。 とおいた。このとき、連続の方程式 (2) 電場E = -Vo-b と磁場 B = ∇×4が次の(ゲージ) 変換で不変であることを示せ。 at 以下電場はなく、静磁場のみがある場合を考え、磁場が向いている方向を軸とする: B = (0,0,B) Əx AA'′=A_∇入, 中→d=6+ at ここで、 入 = \(t,x) は任意のスカラー場である。 さらに荷電粒子の波動関数も同時に →=e-ie (5) と変換させた場合、 Schrodinger 方程式場=H(t,x, l∇)が変換した場に対しても同様に成 立することを示せ。 A = (0, Bx, 0) にとって、とzに依存しない波動関数 (x,y) を調べる。 (2) このとき、トの取りうる範囲を求めよ。 (3) この背景の下で縦と横の長さがLz, Ly の長方形状の十分薄い平板を0に {(x,y)|0 ≤x≤LT, 0≤y≤Ly} (7) のように置き、この平板内に束縛される荷電粒子の運動を調べる。 このとき、以下のように、ベクト ルポテンシャルを Landau ゲージ (8) (4) このことを、Schrodinger 方程式がゲージ変換のもとで共変性をもつor 共変的である、などという。 同じ量子数をもつ状態がなす部分ベクトル空間の次元のことをその状態の縮退度と呼ぶ。 (6) (3) 波動関数 (x,y)=(x)eikyのように変数分離して荷電粒子に対する時間に依存しない Schrodinger 方程式を解き、 固有関数とエネルギー固有値を全て求めよ。 ただし、演習のプリントで与えられ た特殊関数は説明なしに用いて良いものとし、 規格化も行わなくて良い。 (4) 波動関数 (x,y) は方向に周期境界条件を満たすとする。 v(x, y) = v(x,y + Ly) (5) 基底状態に対しょ軸の位置演算子の期待値 (z) をe, B,kを用いて表わせ。 また、 位置演算子の期 待値が平板内に存在する条件から、 基底状態の縮退度を求めよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

問題6、7の答えが分かりません。教えて頂きたいです、、

問題 6 正しいのはどれか。2つ選べ。 1. 電力量は抵抗にかかる電圧と流れる電流の積で表される。 ② 電子1個を IV の電界に逆らって移動させるのに必要な仕事は 1J である。 3.直列に接続された各抵抗に流れる電流量は各抵抗の抵抗値に比例する。 4 回路中の抵抗で消費される電気エネルギーは全てジュール熱に変換される。 ⑤.電気回路の任意の点において、流入する電流の総和と流出する電流の総和は常に等しい。 問題 76本の平行な長い直線の導線が図のように正六角形の頂点A、B、C、D、E、Fの位置に並べられている。これら の導線はいずれも紙面に垂直な方向に張られており、そのうち A、C、D、Eを通る導線には紙面の裏から表の向き、B Fを通る導線には表から裏の向きに、いずれも 1.0Aの電流が流れている。このとき、正六角形の中心0に生じる磁場 の向きで正しいのはどれか。 1. 上向き (OからAに向から向き) 2. 下向き (OからDに向から向き) 3. 左向き (Oから線分 BCの中点に向から向き) 4. 右向き (Oから線分EF の中点に向かう向き) 5. それ以外の向き 問題8 直径1mm、長さ10mの銅線の抵抗 [Ω] に最も近いのはどれか。 ただし、銅の抵抗率はo=1,673×10-°C とする。 BO .O OD F OE

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

分からない問題が多いので解説お願いします 明日テストなので早めに教えていただけると助かりますm(_ _)m

(1) 静止している人の正面前方から,960Hzの振動数のサイレンを鳴らす緊急自動車が20m/s の速さで近づいてきている。 静止している人に聞こえるサイレンの音の波長入 [m] と振動数 f [Hz] をそれぞれ求めなさい。 ただし, 音速は340m/s とする。 5. (2) 長さ0.15mの閉管の管楽器に生じる基本振動の波長[m] を求めなさい。 また,節と腹の場 所がわかるように、 右下図に基本振動の定常波を描きなさい。 (3) 音圧レベルが55dBの音の強さ 155 と, 35dBの音の強さ135の比 4. 運動エネルギーの次元を次元式の表記 [MLTY] により答えなさい。 a fi B=2 r = -2 (MaLp Th) CM'L² 7-2 光に関する以下の各問いに答えなさい。 Iss 135 閉管の管楽器 を求めなさい。 (1) 空気中において, 屈折率 n =√3のガラス面に光が入射角 60° で進んだ場合の屈折角 [°]を求めなさい。 また, ガラス中の光の速さ v[m/s] を求めなさい。 ただし、空気中 の光速は, 真空中と同じであるとして答えなさい。 ⑨:30°V=2.0x108 m/s (2) 屈折率 n = 1.5の液体の液面から 30cmに沈んでいる物体は,見かけ上では,液面から何 cmの深さに見えるのかを答えなさい。 (3) 可視光線よりも波長が短く振動数が大きな光の名称を答えなさい。 紫外線 (4) ある透明な液体の臨界角が45°であった。 この透明な液体の屈折率 n を求めなさい。

回答募集中 回答数: 0