学年

教科

質問の種類

物理 大学生・専門学校生・社会人

難しいと思いますが、頭の良い方よろしくお願いします!!

Maxwell 方程式について以下の質問に答えなさい。 1) スカラポテンシャルゅとベクトルポテンシャルAにより E= grad¢ B= curlA と表すことができることを証明しなさい。 2) 任意のスカラ関数xを使って電場と磁場が Xe grad (p dt E B= curl (A+grady) と表すことができることを証明しなさい。 電子の質量はm=9.1×10-31 kg であり、電荷は -e=-1.6×10-19 C である。 では、その大きさはどの位であろうか。以下の手順にしたがって、電子の 大きさを概算せよ。 電子1個が存在する時、その周りの電場E を示せ。 電子の半径をaとする。電子の周りa<rに広がる電場のエネル 3) 4) ギーを求めよ。 電子の質量の原因がここで求めた電子を取り巻く電場のエネルギー であると考える。電子の質量エネルギーは光速をcとして mc2 であ る。この質量エネルギーが電子周りの電場のエネルギーに等しいと して、電子の半径aを、mecEo を用いて表せ。 この半径の2倍を古典電子半径と呼ぶ。古典電子半径を求めよ。 5) 6) 真空中に面積 S=1cm2 の電極板2枚、距離1mmに置きコンデンサ 7) を作った。このコンデンサに電位差 1V を加える。コンデンサ内部 に蓄えられる静電エネルギーを求めよ。 8) 前問のコンデンサの極板に働くカを求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1