学年

教科

質問の種類

物理 大学生・専門学校生・社会人

III-1(4)を教えてください。

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds部分を流れる電流が点Pに作る磁場dHは、 I ds x r' 4T ¹3 (1) で与えられる。ここで、はSからPに向かうベクトルSP = r 。下の左図参照。 dH= I Sas P III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p,d,z) とし、 その点での規格化された 基底ベクトルをeprepez とする。 円筒座標 (p,Φ, z) の点Pに作られる磁場H (p,p, z) は、 ed の向きであり、磁場のe, 成分, Ho は pのみに依存する、 すなわち H(p, o, z) Hs(p)e. と表すことができることを以下の手順 (1)-(3) で示せ。 = I (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x, 0, 0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 V x H = i (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 2 (3) 最後に、 点Pが円筒座標 (p, 中, z), ≠0の位置にあるとする。 軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中,zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe, 成分, H を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

Ⅲ-1(1)~(4) Ⅲ-2(1)~(3) を教えてください

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds 部分を流れる電流が点Pに作る磁場dH は、 I ds x r' 4 3 (1) で与えられる。ここで、 r'はSからPに向かうベクトルSP、 r' = r 。 下の左図参照。 dH = I S ds III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p, 中, z) とし、 その点での規格化された 基底ベクトルを eps epiez とする。 円筒座標 (p,d,z) の点Pに作られる磁場H (p, 中, z) は、ed の向きであり、磁場のe。 成分, Ho は pのみに依存する、 すなわち H(p,d,z) = Hs (p)eΦ と表すことができることを以下の手順 (1)-(3) で示せ。 (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x,0,0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 (3) 最後に、 点Pが円筒座標 (p,d,z), ≠0の位置にあるとする。軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, V x H = i (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe 成分, H を求めよ。 III-2. 次に、 上の右図のように、 無限に長い円筒に強さの定常電流が流れている場合を考 える。ここで、円筒の断面は半径aの円であるとする。 円筒の中心軸を軸とする。 円筒に は強さの定常電流が軸の正の向きに, 円筒内を一様に流れているとする. (1) III-1 の結果を利用して、 円筒座標 (p, Φ, z) の点Pに作られる磁場 H (p, 中, z) は、 ed の向きを向くことを示せ。 また、 磁場のed 成分, H は p のみに依存することを示せ。 即 ち、この場合も磁場は式 (2) のように表すことができる。 (2) 円筒領域p<α及び円筒外の領域p>αにおいて、電流密度の大きさ i = i を求め (3) マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用して,次の領域 における磁場のe」 成分, H を求めよ。 (a) p<a, (b) p> a

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

ドブロイ波長についてなんですが 波長の整数倍nと量子数nが一致する理由ってありますか?

標準問題 子の速さを1,真空のクーロンの法則の比例定数を ko とすると, 軌道半径rはe, m, ko, v との間にはたらく静電気力を向心力として, 等速円運動をしていると考える。このときの電 を用いてア=ア] と表せる。 軌道の周の長さ 2πrは, 量子条件より, 正の整数(量子数) 20原 124 A) 必147.〈水素原子モデル〉 次の文中の「ア]から「カに適切な数式や数値を入れよ。 ボーアは水素原子の構造に関する次のようなモデルを提唱した。 n, プランク定数hおよびm, uを用いて, 2πr=_イ」と表せる。この式は,ド·プロイに よって物質波の考えが導入されて以降,「2πrが定常状態の電子の波長(ド· プロイ波長)の 整数倍である」と考えられるようになった。これらの関係から, 量子数nの定常状態の軌道 半径r,はe, m, ko, h, n, π を用いて, グカ=ウ」と表すことができる。n番目の定常状 態にある軌道上の電子の全エネルギー Enは, 電子の運動エネルギーと,静電気力による位 置エネルギー(無限遠を基準とする)の和より, e, m, ko, h, n, π を用いて, En=エ と表される。このように, ボーアは水素原子の中で定常状態にある電子は,とびとびのエネ ルギー準位をもつという仮説をたてた。 ボーアの水素原子モデルにおいて, 電子が n=1 の定常状態にあるときを基底状態, n>2 の定常状態にあるときを励起状態という。量子数nの励起状態にある電子は,きわめて短い 時間で量子数n'("'<n)の状態に移り,その差のエネルギーを光子として放出する。このと き,放出される光子の波長入は振動数条件から, 真空中の光の速さcおよび e, m, ko, h, n, n', π を用いて, ー%=Dオ]と表される。 水素原子の示す線スペクトルの観測結果から得られた輝線の波長入は,リュードベリ定数 Rを用いてー=Rー)の規則性をもつことが示されていた。 ボーアの水素原子モデ ルによるリュードベリ定数の計算結果は, すでに知られていたリュードベリ定数の値と高い 精度で一致し,水素原子のスペクトルを理論的に説明することに成功した。リュードベリ定 数 R=1.1×10'/m とすると, 水素原子の線スペクトルのうち, 可視光線領域 (3.8~7.8×10-7m)の輝線群の2番目に長い波長は, 有効数字2桁でカ 1 1 2 n Im と計算できる。 [20 九州工大 改]

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物性物理学の本を読んでいて、質問があります。 本では, 量子力学による1電子原子の電子状態の記述について 添付のように述べていて, (1.12)式までは良いのですが, 赤枠で囲ったところの式(1.13)の導出過程が知りたいです。 よろしくお願いいたします。

$1.2 1電子原子の電子状態 1 p° = 2me 2 a 1 V= 2m。 2m。(r+ r dr 原子においては,原子核を中心としてそのまわりの半径10-10m程度の領 の形となる。ここでAは次のような角度に関する微分演算子である。* 域を電子が運動している。原子の構造を理解するためには,この電子の振舞 1 sin 0 d0 1 を調べなくてはならない。まず最も単純な場合として,Ze の正電荷をもった A= - (sin 0 sin' 0 核のまわりを,1個の電子が運動している場合を考える。Z=1であればこ 1電子原子のハミルトニアンがこのように具体的に与えられた.このハミル れは水素原子そのものであり,Z =2であれば He* イオンということにな トニアンに対するシュレーディンガー方程式(1.9) は2階の微分方程式の形 る。 をしている。これを満たす解として波動関数T(r, 0, φ) が求まれば,1電 原子の質量のほとんどは核に集中しているので、そこを重心として座標の 子原子における電子の分布の様子がわかる。ところで,原子に属する電子の 原点にとってさしつかえなかろう。電子は -e の電荷をもち,核の正電荷 波動関数は,核から十分遠方(r→0)ではゼロに収束するはずである。こ Ze とクーロン相互作用をもつ。そのポテンシャルエネルギーは電子と核の のような境界条件の下で(1.9)式を考えると,電子のエネルギー固有値 E が 間の距離rに反比例し, 離散的な特定の値をとるときのみ解が存在する。これは量子力学系の顕著な Ze? V(r) = - 特徴である。 4TE0ア 最も低いエネルギー固有値を与える解は球対称で、次の形をしている。 である。* これは万有引力と同じ形をもつので,古典的に考えれば,地球が 17Z/2 ( exp(-) 太陽のまわりを回るように電子は核のまわりを楕円軌道を描いて回ると考え 『(r) = たくなる。しかしながら,このような極微の世界まで古典ニュートン力学が ただし,ここで そのまま成立するわけではない,電子の振舞を正しく理解することは,今世 4TEh An = mee? =0.529 A 紀初頭登場した量子力学をもってはじめて可能となった。量子力学によると, 電子の存在確率は波動関数 『(r)の絶対値の2乗に比例する。定常状態では 『(r)は次のシュレーディンガー方程式を満たすというのが量子力学の骨子 はボーア半径とよばれる。 である。 H V (r) = ET (r) ここで はハミルトニアンで,電子の運動エネルギーとポテンシャルエネ ルギーの和であり, 1 p°+ V(r) 2m。 H = の形をもつ。** 第2項のポテンシャル項は方向によらず,核からの距離のみ に依存するので,全体を極座標を用いて表した方が都合がよい。このとき, 第1項の運動エネルギーの部分は Eo = 8.8542 × 10-12 F/m は真空の誘電率。 m。は電子の質量,p= - iAVは運動量オペレータである。ただし,▽はナプラと読 み,直交座標系では 定,立,えを直交する単位ペクトルとして、V= -+ の形をもつ微分演算子である。カ = h= 6.626× 10-4JSはプランク定数。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

弦の定常波の振動数の測定の範囲です。 予習問題の(2)の問題a b cが分かりません!答えを教えてください!!!!!!よろしくお願いいたします!!!!!!

が得られる。 式と呼んでいる。 刀性 数の測定 振動させると図のような定常波ができた。 弦の 線密度を9.80×10-4 kg/m, 重力カ加速度を9.80 m/s? として問に答えよ。 221 いま。 +x方向に進む波として正弦波関数 y(x, t) = A sin (wt-kx) (16) を仮定すると, y(x, ) dr? 弦を伝わる波の波長入 [m] はいくらか. 弦を伝わる波の速さ [m/s] はいくらか. 音叉の振動数f[Hz] はいくらか. 2- = ーk°y(x, t) = -k?A sin (wt-kx) 実験 (17) 1. 実験装置および器具 弦定常波実験器,発振器, 電子天秤, 周波数 シンセサイザー, 弦(糸), おも り (5g, 5 個),物差し y(x, t) - -w°A sin (wt-kx) or2 = -0°y(x, t) (18) となり、これらを(15) 式にあてはめると 2 k? (19) 2. 実験方法 2.1 糸の線密度の測定 の が得られる。(19) 式を変形すると横波の速さ として (1) 糸を1.2m位切り取り, その長さLを の T 測定する。 (2) 切り取った糸の質量 mを電子天秤で測 定する。 (3) 糸の線密度のを求める. 線密度はσ= 0= k (20) V 0 が得られる。 さらに,一x方向に進む波として次式 y(x, t) = A sin (wt+kx) を考えても全く同じ結果が得られる. なお,(16)式と(21)式に適当な係数を掛け て加えた式もまた,波動方程式の解(一般解) になることをつけ加えておく. (21) m/Lで得られる。 2.2 おもりの質量の測定 5個のおもりに番号をつけ, それぞれのおも りの質量Mを測る。 2.3 定常波の波長の測定 (1) 図7のように, 弦定常波実験器と発振器 予習問題 (1)定常波について簡単に説明せよ。 図のように弦の一端を音又に取り付け, 他 端に滑車を介しておもりを下げる.この音叉を を配置する。 (2) 発振器の外部入力端子と周波数シンセサ イザーの出力端子が接続されている場合に は,その接続を外す。 (3) ビボット滑車をできるだけ振動子から遠 0.75 m 0.012 m ざけて固定する。 (4)糸の一端を弦固定柱に固定し, 次に, 他 端を振動子の穴に通し, おもりを1個つけ, 糸を滑車にかける. (5) 出力調整つまみを反時計方向 (左回り) に回しきる。 (6)周波数調整つまみを矢印に合わせる。 (7) スイッチを入れ, 出力調整つまみを右に 音叉 →x[m] 0.75 0 おもり 質量 1.00 kg (14)式の説明,xが微小変化したときの関数f(x) の変化分の公式として f(x+dx)-f(x) = f (x) dr が知られている。この式のf(x) として (x p 応させると(14)式が得られる。 を対

回答募集中 回答数: 0