学年

教科

質問の種類

数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だとわかるのでしょうか…?教えて頂きたいです🙇🏻‍♀️🙇🏻‍♀️

15 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。このタイプの問題は、距離(長さ)の条件から図形を考 えるものが多く、三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 T_PLAY1 方角と距離の条件から図を描く問題 XX 2X 3X 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 Cの家はBの家の真東にある。 ウ Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 .Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は√74kmである。 4.Dの家から駅までの距離は4√2kmである。 5.Fの家から駅までの距離は10kmである。 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア,ウエに着目すると、アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。 位置関係 ②

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だと判断できるのかが分かりません。これはどこからそう考えてるのでしょうか…?どなたか教えて頂けますでしょうか🙇🏻‍♀️🙇🏻‍♀️

が確 かり、 ます。 13 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。 このタイプの問題は、距離 (長さ) の条件から図形を考 えるものが多く、 三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 PLAY1 方角と距離の条件から図を描く問題 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 ア.Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 イ.Cの家はBの家の真東にある。 ウ.Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 エ.Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は74kmである。 4.Dの家から駅までの距離は4√2km である。 5.Fの家から駅までの距離は10kmである。 F 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア, ウ, エに着目すると、 アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青のところまでは分かるのですが、その後のAの指数m-1とa1 (この1ってところが分からない)の関係性を教えて欲しいです。スタートがAmではなくてAm-1だったらm-1の時にa0が対応するのは分かるのですが、その理由がわかりません。

① このファイルにはアクセス許可が制限されています。 部の機能にアクセスできない可能性があります。 - アクセス許可の表示 × m を0以上の整数とする。 10m 秒の時点で A,Bを訪れているユーザー数を am人, bm人 とする。そうすると調査結果から, 時刻に伴って変化する数列{am}と{bm}ができて,a=100, bo = 200および, Jam+1=0.9am+0.26m lbm+1=0.1am+0.8bm を満たす。これは一種の漸化式であるが, 2つの数列をまたがって表現されたもので 連立 漸化式といわれる。 その形は連立1次方程式と似ている。 そのため行列を用いて, (am+1) = (0.9 0:2) (bm) 0.2/am 0.8 0.9 0.2\ と表せる。ここで, A= 0.1 とおくと, 10m 秒後の人数の分布は, 0.8. ram² am-2 = A =A A =A2 (am-2) m m-1 かる! ao Am (61) = Am (60) = 4 (200) " で計算することができる。 最後の式には, Am乗が登場している。そこで続いて, 行列のべき 乗を考えてみよう。 bm-21 \bm-2 = Am-1 == 注意.上の行列4は行ベクトルの和が, (0.9 8,2) (0.1 0.8) 15 13 と、すべての成分が1の行ベクトルになる。このような、行ベクトルの和が1だけの行ベク トルとなる行列を確率行列という。確率行列は、分布状態の変化を表すときなどに現れる重 要な行列である。 2.2.2 行列のべき乗 すでに私たちは、 対角行列のべき乗が簡単に求められることを25ページで学んでいるの で,この考え方をもとに行列のべき乗を求めることを考える。 O Mi +

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
1/5