学年

教科

質問の種類

数学 大学生・専門学校生・社会人

確率の勉強をしている学生なのですが、この問題が分かりません。どなたか教えていただけませんか。

練習問題 1.8 (積率母関数) X を非負の確率変数とし, x(t) = Eetx は全てのt∈ に対して有限であると仮定する.さらに,全てのt∈ R に対し E [XetX] < ∞ であると仮定する.この練習問題の目的は, '(t) = E [Xetx] で あり、特に'(0)=EX であることを示すことである。 微分の定義, すなわち次式を思い出そう. 4'(t) = lim x(t) - (s) lim st t-s st EetxEesx t-s 「etx = lim E st t-s 上式の極限は,連続な変数sについて取っているが,t に収束する実数列{8}n=1を 選ぶことができ, 次を計算すればよい. 「etx e³n X lim E sn→t t-Sn これは、次の確率変数の列 etx -enx Yn = t-Sn の期待値の極限を取っていることになる.もしこの極限が, t に収束する列{Sn}=1 の選び方によらず同じ値になるならば、この極限も limotE [ex と同じで,そ れは '(t) である. .tx sx ← -e t-s 解析学の平均値の定理の主張は,もしf(t) が微分可能な関数ならば、任意の実数 s ともに対し,stの間の値の実数0で次を満たすものが存在するというものである. f(t)-f(s) =f' (0) (t-s). もしweΩを固定し,f(t) = etx(w) を定義すると,この式は, etX(w)_esx(w)=(t-s) X (w)e (w)x(w) (1.9.1) となる.ただし,(ω) はωに依存する実数 (すなわち,tとsの間の値を取る確率変 数)である. (i) 優収束定理 (14.9) (191) 式を使って,次を示せ. lim EY = Elim Yn=E [XetX] . (1.9.2) n→∞ [n→∞ このことから,求める式 4'(t) [XetX ] が導かれる. (ii) 確率変数 X は正の値も負の値も取り得、全てのt∈Rに対し Eetx < かつ E [|X|etX] < ∞ であると仮定する。 再度 '(t) = E [XetX] を示せ(ヒント: (1.3.1) 式の記号を使って X = X + - X- とせよ . )

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

3 ∠ACB=90° である直角三角形ABC と, その辺上を移動する3点 P, Q, R がある。点 P,Q,R は,次の規則に従って移動する。 • 最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P,Q,R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点Qは辺BA上を, 点R は辺 CB 上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし, 点Pは毎秒1の速さで移 動する。 点P,Q,Rは,それぞれ点 C, A, B の位置に同時刻に到達し,移動を終了 する。 (1) 図1の直角三角形ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ, S= オ 4 袋の ④る白こりし個 60° 30 A ・20 B 図 1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値, 2回だけとりうる値を,次の①~②のうちからそれぞれ1つずつ選べ。 ただし, 移動には出発点と到達点も含まれるものとする。 ⑩ 5/2 ① 4/5 ② 10/3 とりえない値 カ 1回だけとりうる値 キ 2回だけとりうる値 ク (iii) 各点が移動する間における △APQ, △BQR, △CRP の面積をそれぞれS1, S21 S3 とする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと もにどのように変化するかを答えよ。 (あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 12-1 5- ケコサシ 秒後 ス A B ・13・ 図2

回答募集中 回答数: 0
1/16