学年

教科

質問の種類

数学 大学生・専門学校生・社会人

公務員試験の、空間把握の問題です。 図のように、三角形AFPの面積を求めるのですが、なぜ最後に面積を求める際に2√2➕6√2をしているのかがわかりません。どなたか教えてください。

年度 2.22 3点を こあり、 正解 5 OF DE 線AFに平行である。 よって、点PからAFと平行な線を引き、 辺CG上に現れる点をQと しては、 切断線は平行となるので、 点Pから面CDHGに引くことのできる切断 (図1)。平行な面に対 (図2)。 さらに、点Qと頂点Fは同一面上の2点となるので、 直線で結ぶと、 切断面AFQPは 線を引く。 同一面上の2点は直線で結べるので、頂点Aと点P、頂点Aと頂点Fを直線で結ぶ 舞台形(図3) となり、この図形の面積を求めればよい。 p.2cmc. [E H 図1 F A E B D R H S 図3 A E P2cm B F D H C 図2 12cm Q G TAC生の正答率 53% P2cmC B F 2 cm Q G 現代文 数的推理 資料解釈 点P及び点Qから辺AFにそれぞれ垂線を引き、その足を点R Sとおく。 CPQは直角二等辺三 角形よりPQ=2√2cmであり、 △AEFも直角二等辺三角形よりAF=6v2cmである。 PQRS, AR= SFより、FS = (6√2-2√2)+2=2√2 [cm] である。 また、 △FGQはGQ=4cm、FG=6cmの直角三角 もより、三平方の定理より、FQ=√6°+4°=2√/13[cm]となる。よって、△FQSに着目すると、三平方の 完理より、QS=√(2√13)-(2√2)=2√/II[cm] となる。 したがって、切断面の面積は、(2√2+6VZ)×2V/II×1/12/=8V/22[cm*] となるので、正解は5である。 何設足す? 空間把握 文芸 257 日本史 世界史

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

線形代数の問題になります。 赤マーカー部分で、(p^-1bp)^2の対角化が左から1.ω、ω2になる理由が知りたいです。

7347 アノプス 答え 在 348 アーマルド ■349 ヒンバス IC3 C1 G をBの多項式で表せ。 C3 C2 C3/ C2 Gi Bを対角化せよ。 を対角化せよ。 0 0 0 0. とするとA'=0. (解答) (1) A=10 固有方程式 [E-A|=x=0, .. §1. 行列,行列式 149 ベクトルは(c,0,0),((0,d,0) ただ2つである (c=0,d≠0). B'=E (単位行列) ( 山形大院) i=0 (3重根). A の1次独立な固 1001 0 0 (3) B' 1 0. (4) C=C3E+C₁B+C₂B² (5) 固有方程式 [E-B|=パ-1=0, ∴x=1,w,w²(ω= (−1+√3i)/2).p= x=0 とするとcx=xx. [2] ABfo = 0, fo=0.... ②, 1,1,1)g=(1,w,w2), r=(1,ω',ω°) とし,P=(p,q,r)とおくと, P-BP=diag{1,w,w2}. (6) P-¹B²P = (P-¹BP)² = diag{1, ², w} £ y P-¹CP= diag{c₁+c₁+cz ataw+cz@',C2+C1w2+ czw}. 問題3- 正方行列 A,BがAB+BA=1, A'=B'=0という関係を満たすとき (ただし, I は単位行列, 0 は零行列とする), C = AB で定義される正方行 列Cについて,次の問いに答えよ. (1) C=Cが成立することを証明し, これからCの固有値が 0 または であることを導け. (2) 固有値 0, 1 に対するCの固有ベクトルをそれぞれ fo, f とすると Bfo, Af がともに零ベクトル, Bfı, Afoがそれぞれ固有値 0,1に対 るCの固有ベクトルとなることを証明せよ。 (東大阪 番 (1) AB+ BA=I ・・・ ① この両辺を平方し, A'=B'=0を +BABA = I. ① より BA=I-C を代入して C2 = C を得る. C ‥. à(入-1)x=0, x=0 より入=0,1 を得 ABf=f, f≠0 …..③ とする.

解決済み 回答数: 1
1/3