学年

教科

質問の種類

数学 大学生・専門学校生・社会人

右に書いている解き方ではダメですか?

A 889 18A4 【解説】 平面図形からの出題である。 任意の △ABCの外側に三つの正三角形 △ABD, BCE, CAF をかき,それ ぞれの正三角形の重心をG,H,Iとするとき, △GHIは正三角形となる。 この三角形をナポレオンの三角形とい う。また,AH, BI, CGは1点で交わる。この点を第一ナポレオン点という。 第4問 場合の数と確率 【解法 】 odnos 賞 (1) 太郎さんの袋にはグー () が1枚, チョキ () が4枚,花子さ んの袋にはパー (1) が1枚, チョキ () が4枚入っているから, 1回目の勝負で太郎さんが勝つのは, (太郎, 花子)のカードの取り出 し方が () ()のときである。 よって、求める確率は1/13×1 4 4 1 8 + × 5 5 25 5 CE) 00005 1回目の勝負で花子さんが勝つのは, (太郎, 花子) のカードの取り出 し方が (,)のときである。 よって、求める確率は1/3x1/2= 25 (2)3回目の勝負で太郎さんが勝つのは、2回のあいこの後, (太郎,花 子)のカードの取り出し方が (,),( 図)のときである から、求める確率は (1)×(×) (4)×(×) × + 3 3 2-3 4 × = 3 25 3回目の勝負で花子さんが勝つのは、2回のあいこの後, (太郎, 花子) のカードの取り出し方が(,)のときであるから、求める確率は 4 5 13 1 1 3 3 25 DA as 00 AB がを (3)2回目の勝負で太郎さんが勝つ確率は 3 3 =(x+1/x1)x(x) 4 4 4 4回目の勝負で太郎さんが勝つ確率は 6 25 1 (++)× (׳)× (2×)× (±±±±±)- X 12 X 2 12 25 25 2回目の勝負で花子さんが勝つ確率は 4 1 25 4回目の勝負で花子さんが勝つ確率は 3 2 12 + (1x16)x(x1)x18x1)x/1/2×1/2)= 5回目の勝負で花子さんが勝つ確率は 1 25 -59 中 pa な No.1!! 校

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(2)どう計算してるんですか? 書いて欲しいです、、

次の等式を示せ。 (1) 1-tanh2x=- 1 cosh2x (2) sinh(x+y)=sinhx cosh y±coshx sinhy- 当 (3) cosh(x±y)=coshx coshy±sinhxsinhy 指針 双曲線関数の定義式 sinhx=- e-e-* 2 cosh.x=_extex tanhx=- e*-e-* (1) 関数 また、 Blim xa 2 e*+e** と、等式 coshx-sinhx=1 を利用して式変形を行う。 等式 A=B の証明の方法は,次のいずれかによる。 (2) x- これ [1] AかBの一方を変形して,他方を導く (複雑な方の式を変形)。 [2] A, B をそれぞれ変形して,同じ式を導く。 [A=C, B=C⇒A=B] [3] A-B=0 であることを示す。 [A=B⇔A-B=0] ここでは, [1] の方法で証明する。 (3) 任 あ とな x= り立 ex-e-x 解答 (1) tanhx= であるから extex 1-tanhx=1-(ex-e_x)= (e2x+e-2x+2)-(e2x+e-x-2) daia そこ ま (exte-x)2 dale deob ad (ex + e¯x)² = (ex + ex )² 2 cosh2x 2 ex-e-x (2) sinhx= coshx= 2 exte-x 2 ey-e-y ete- がはこ sinhy=- 2 coshy=2 であるから sinhx coshy ±coshx sinhy= ex-exte-y exte e-e -y ・土・ (4) ネ 2 2 4 lexty_ -e-(x±y) 2 ex-ex (3) sinhx=- (ex+x+ex-x-e-x+y—e¯¯³) ± (ex+y—ex−y + e −x+y-e¯x-y) sin(x±y) (複号同順) 2, coshx= t=e exte-x 2, sinhy= であるから cosh x coshy±sinhx sinh y=- exte¯* e³te¯ e-ex e-e- 2 2 ・土・ (ex+x+ex-y+e¯x+y+e¯*¯³) ± (e*+y—ex-y-e-x+x+e-x-3) 4 2 exty te - (x+y) 2,coshy= 2 ま (6)x で COS 更 ま sete

解決済み 回答数: 1
1/15