学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む

1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅).

未解決 回答数: 0
数学 大学生・専門学校生・社会人

(2)について どうゆう手順でとき進めて行くんですか? また、なぜδは最小の値をとるんですか? 図とか想像出来ていないので教えて欲しいです。

48第2章 関数 (1変数) 基本 例題 030 E-8 論法による等式の証明 次の等式をE-8論法を用いて証明せよ。 (1) lim (5x-3)=2 (2) lim (x2+1)=2 x-1 1 基本 指針 (1) とも, 左辺の極限値は存在して, 右辺と一致することは,すぐにわかる。 そのこい E-8論法を用いて証明せよとあるから、関数の収束の定義を今一度確認しておこう。 定義関数の極限 (E-8論法 ) 任意の正の実数に対して、 ある正の実数8 が存在して、f(x)の定義域内の 0<x-a|<8であるすべてのxについて|f(x)-α|<e となるとき、関数f(x)は 12203054 [oclx-alk8 Hon-alc x→αでαに収束するという。 ⇒ (1)証明すべきことは、「任意の正の実数に対して、ある正の実数が存在して 0<|x-1|<8 であるすべてのxについて (5x-3)-2|< が成り立つ。」である。 基本 例題 031 €18 下の指針の定理について, (1) 下の関数の極限の (2) 下の, 合成関数の極 (5x-3)-2|=5|x-1|により, | x-1 <8ならば5|x-1|<5δ であることを利用すれば、 い。 (2)証明すべきことは、 「任意の正の実数に対して、 ある正の実数δが存在して 0<x+1|<8 であるすべてのxについて | (x2+1)-2|<e が成り立つ。」 である。 |(x+1)-2|=|(x+1)(x-1)|=|x+1||x-1|である。 x-1 であるから,xが-1に い状況のみを考えればよく、例えばx+1|<1 すなわち-2<x<0であればx-1|<37 ある。 299- 指針定理 関数の極限の性質 関数f(x), g(x) お したがってδを1より小さくとるとき,x+1| <δであれば | x+1| <1であり、このとき |x2+1-2|=|x+1||x-1|<3|x+1| <38 となる。 これを利用すればよい。 [CH|A|R|T-8 論法が先,8が後 解答 (1) 任意の正の実数e に対して, 8= m とする。 d= 5 このとき,0<|x-1|<8=1であるすべてのxに対して 与式のxに1を代入す れば極限値が2である ことはすぐにわかる。 |(5x-3)-2|=5|x-1|<58=e よって lim (5x-3)=2 (2) 任意の正の実数』に対して,=min {1, 2} とする。 このとき, 0<|x+1|<8であるすべてのxについて、 |x+1|<1であるから x→1 |x-1|=|(x+1)-2|≦|x+1|+2<1+2=3 また,x+1|< であるから |(x2+1)-2|=|x+1||x-1|<13×3=e よって lim (x2+1)=2 X-1 指針にある通り後の 計算を見越して,ô= としている。 < (1) と同様に,等式の極 限値が2であることは すぐにわかる。 三角不等式。 [1] lim {kf(x)+ x-a [2] limf(x)g(2 xa 定理 合成関数の極 関数f(x), g(x) このとき,合成関委 E-δ論法による証 対応する の値を (1) f(x) g(x) の極限 る。 関数の値 える。 (2) 合成関数 f(a) に近づ 解答 (1) 性質 [2] を任意の limf(x)= x-a 0<\x-a 成り立つ ここで, c0 から limf( x-a 48は1との大きく ない方をとればよい。 更に、指針にある通り、 後の計算を見越して 8=1としている。 0<\x が成 lim x-a

未解決 回答数: 1
1/19