数学 大学生・専門学校生・社会人 約1時間前 この問4の10が、問2になる場合 (c)はどうなりますか 線形代数の問題です 問題4 以下の 10 から 21 に当ては まるものを答えよ. (a) 問題1から問題3の方程式で、解が存在する が一意に定まらないものは,問題 | 10 であ る. 10 に当てはまる問題番号を数字で答 えよ. (b) 問題 10 の解は x = vo + C1v1 + C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 0, 1, 02 は, 11 0 vo= 12 0 13 14 17 1 0 v= 15 0 02= 18 1 16 19 と表される. (c) 問題 10 | の行列 A を係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はx= 21 と表される. ● 20 「には, 「自明」 または 「非自明」のい ずれかが入る.ふさわしい方を選んで答えよ. • 21 |に当てはまるものとして, ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) (ウ) C101+C202 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 10日前 課題の(1)と(2)解き方教えて下さい 抗体検査 例(抗体検査X) 感染症 X に対して、日本人が抗体を持っている割合は40% です。 Aさんは、精度が90% の抗体検査を受けました。 このとき A さんが、陽性となる確 率、陰性となる確率をそれぞれ求めてみましょう。 ここで、 検査の精度とは、抗体を持 っていた場合に正しく陽性と判定される確率、 および抗体を持っていなかった場合に正 しく陰性と判定される確率のことです。 全確率の公式を用いると、 次のように計算され ます。 0.36 P(Aさんを陽性と判定) = P(Aさんが抗体を持っている) P (正しく判定) + P(Aさんには抗体がない) P (判定が間違う) 4 9 = + 6 1 10 10 10 10 42 (42%) 100 Q.x0.9+0.6×0.1 =0.36+0.06=0142 P(Aさんを陰性と判定) = P(Aさんが抗体を持っている)P (判定が間違う) 一本あり(陽性) +P(Aさんには抗体がない)P (正しく判定) 4 1 6 9 58 P(抗体あり)P(P1体あり = 10 + 10 10 10 100 (58%) 0,4×0,9 P(陽性) 0142 0.6 0136 抗体ない 0.9 0.86 0.1 0.1 0.4 抗体あり ではレポート課題です。 陰性 0.58 ・陽性 0.42 0.9 D. I 100 課題(1)(抗体検査Y)感染症 Y に対して、日本人が抗体を持っている割合は 0.1% です。 B さんは、精度が90% の抗体検査を受けました。 このとき、 全確率の公式を用 いて、 B さんが陽性となる確率、 陰性となる確率をそれぞれ求めてください。 (2) さらに、 抗体検査 XとYについての計算結果から、二つの検査にはどのような違 いがありますか? 比較して分かることを述べてください。 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 12日前 五番教えて下さいm(_ _)m 問題 1.3 ? 1. 次の行列の積を与えられた長方形分割を用いて求めよ. -20, 2 11 0][1 11 0] 4 30 1 3 201 00:12 0 0 2 1 0 00 10 01 0 2 Q2. [4] a2a3] を行列の列ベクトルへの分割とするとき [a] [aza3] 1 を 計算せよ. 2 3 a,+702 3. A=[aaz] (列ベクトル分割), B= のとき積 AB の列ベクトルへ 7 ではダメなのか? の分割を求めよ. < B1 4. A1, Bi はm次正方行列, A2,B2 はn次正方行列とする. Aì と B1, A2 A₁ O B1 0 と B2 が可換であるならば, A= とB= は可換であるこ O A2. 0 B2 とを示せ. Em A 5.Aがm×n 行列のとき を求めよ. 0 En 未解決 回答数: 1
数学 大学生・専門学校生・社会人 19日前 1がわかりません。計算すると3+2√2になって整数部分は6になるんじゃないんですか? 答えは5だそうです √2+1 72* の整数部分をα 小数部分を6とするとき, 次の値を求めよ。 /2-1 1 1 1140% □ (1) a □ (2) b □ (3) + b 例 未解決 回答数: 1
数学 大学生・専門学校生・社会人 21日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 23日前 4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください 数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1ヶ月前 大門2の簡約化解いて欲しいです。 最初、簡約化した時は、7とか9とか値がでかいから小さくしてから簡約化を始めようとか考えていたのですが、なんぼしてもダメだったので、次にゴリ押しで計算していくような方法でしました。でも、結果は2枚目の通り分母分子がすっごいでかい値になってし... 続きを読む 数学 初歩からジョルダ 3x-6y+5z+W=-7 7x+27+5w = =-9 -2x+10g+5z+14w=6 4x+y+27+2w=3 5+2g-Z+w=0 E = ) [レ 5 14 6 3-6 37 2 4 54 5 0 10 5 2 1 2 で 2 E→ Ex(t) E21(-7) E31(2) E41 (-4) E51(-5) 2 P より、 3-65 7245 2 S 10 1 2 SN'T NA 2 2 -9 630 となるので、 をおいて、拡大存的別を問約化する。 → 1 59-179 。 E34 0 125/18 5/18 自分 。 E23( 00 262/9 - 380 32/9 0 E2(6) b 102/6 - 16% 62/6 14 Esa (-14) 0 0 0 -2 - 7/3 140/22/3 。 6 0 0 5/1/3 4/3 9-1/3 2/3 3/3 122/322/325/3 - 4/17 25/234327/468 12/13 -4089 9/26 2539 ( E12(2) E42(-9) ₤32(-12) 0 0 0 0 0 0 →>>>> ¥35 F3 (56) 長は小麦) E231-1/2) ₤43(-) Ess(-) 0 - 0 0 78 0710035 156 1673 117 09 0 00 176362 13 0 0 0 L 0 0 0 00 0 O D 2539 1 8178 b -00 0 20/18328/9 2/9 2619-3893819 103/31 -26-38-9 - 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 最後できたと思ったのですが、 M=1の時の値が問題文のBと等しくなかったことにきずいて、よく考えたら二項定理が間違っていると思いました。 そして二項定理を解こうとしたのですが、どうすれば良いのか分からなかったので教えて欲しいです。 (2)方針としては(1)を使って規則性... 続きを読む [1] (1) m 010 A O = J D D O 0 O 1 9 0 m=292 A 00 m=32. A³ =AA= 8 001 010 0.0 DO = ( 0 0 0 ° P 00 0 010 000 9 11 800 10 D D O 0 060 000 m239 z Am = (2)A+4E= D 060 AE = EA +2. Bm = (A+4E)" m T 0 0 C A = A + 4m AE + 4 Em = = m 4 Am f +4₤m ex AmA +4E 04mo + 0 04h 0 0 0 40 = 4 0 4 0 0 = I (A+46) B AM + ml 4EAM- である。 mCAA mm Cm 4m 4E m = 1 B 962 m=2982 0 0 0 a B² 00 1 1=39785 006 000 0 00 f P D P O 0 4 + D 8. 0 + 00 8 0 004 + 40 040 4 。 = とかるので 45 0 D 45 6 0 4 0 D O 4 = 0 4 48 0 0 48 0 4 B³ = 000 f 120 。 + 4 D D = 4120 O O 12 D 4 9 D 4 12 0 O P 9 0 G 123962 [44m °) 0 0 44m 004 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約2ヶ月前 手描き図形汚くてすみません。 角Bは直角である 点MはBCの中点 この直角三角形が一回転する時の軌跡を描いて欲しいです。 A B M C 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約2ヶ月前 切り取り後の図形のイラスト有りで説明いただけると幸いです。。 問42 下図のように立方体ABCDEFGHがあり、 辺BCの中点をMとする。 この立 方体を、3点D、E、Mを通る平面で切断して2つの立体に分け、頂点Aを含む立体を取 り除く。 次に、 残った立体を、さらに3点D、 G、 Mを通る平面で切断して2つの立体に 分け、頂点Cを含む立体を取り除く。 残った立体の辺の数と面の数の組み合わせとして、 最も妥当なのはどれか。 (1) (2) (3) 辺の数:10、面の数:6 辺の数 10、面の数:7 辺の数 : 12 面の数:6 M A TB H (4) 辺の数: 12、 面の数: 7 (5) 辺の数 : 12 面の数 : 8 E F 未解決 回答数: 1