学年

教科

質問の種類

数学 大学生・専門学校生・社会人

投影図の問題です。図4の重なる辺を調べて面を移動している所が、何をしているのか全く分かりません。ここをもう少し分かりやすく示して頂くことはできるでしょうか…?

5. 3. 1. A Challenge 立方体の展開図の問題 図Iのような一つの面で接している正六面体A, Bがある。 A,Bには模様 から見た図である。 また、 AとBの接する面の模様は一致しており、底面には があり、図Ⅱは、 ①の矢印の方向から見た図であり、図Ⅲは、②の矢印の方向 模様がない。このとき、A,Bの展開図の組合せとして最も妥当なのはどれか。 (1) A A 図 I A H B A Firmy B B 図 Ⅱ B B 2. 4. A A B 図Ⅱ 国家総合職 2016 A B AとBの接している面以外の10面を、図1のよ うに、ア~コとします。 ウとクは底面ですから、 模 様が描かれていませんね。 図 1 オ ア 図2 イ A ↑ エ キ A 力 B 1 ク ア コー イ ケ B Aのほうだけちょっと 色を付けとくね! さらに、図1の10面について、 AとBそれぞれの展開図を描くと、 図2の ようになります。 たしかに 力 ア B 1 ク キ ク I A t " これより、 まずAについて、アとウは向かい合う面ですが、肢2,3は、 図3のように、向かい合う面の位置関係 (基本事項①) になっていませんので、 ここで消去できます。 また、肢5については、エに描かれた線の向きが図2と異なることが、 アの 線とのつながりからわかり、同様に消去できます。 こうじゃないと いけないんだよね多分

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
1/2